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Abstract

Modular product architecture is characterized by the existence of standardized interfaces between
the physical building blocks. A module is a collection of technical solutions that perform a function,
with interfaces selected for company-specific strategic reasons. Approaches to modularity are the
structured methods by which modular product architectures are derived. The approaches include
Modular Function Deployment (MFD), Design Structure Matrix (DSM), Function Structure
Heuristics and many other, including hybrids. The thesis includes a survey of relevant theory and a
discussion of four challenges in product architecture research, detailed in the appended papers.

One common experience from project work is structured methods such as DSM or MFD
often do not yield fully conclusive results. This is usually because the algorithms used to generate
modules do not have enough relevant data. Thus, we ask whether it is possible to introduce new data
to make the output more conclusive. A case study is used to answer this question. The analysis
indicates that with additional properties to capture product geometry, and flow of matter, energy, or
information, the output is more conclusive.

If product development projects even have an architecture definition phase, very little time
is spent actually selecting the most suitable tool. Several academic models are available, but they
use incompatible criteria, and do not capture experience-based or subjective criteria we may wish to
include. The research question is whether we can define selection criteria objectively using
academic models and experience-based criteria. The author gathers criteria from three academic
models, adds experience criteria, performs a pairwise comparison of all available criteria and
applies a hierarchical cluster analysis, with subsequent interpretation. The resulting evaluation
model is tested on five approaches to modularity. Several conclusions are discussed. One is that of
the five approaches studied, MFD and DSM have the most complementary sets of strengths and
weaknesses, and that hybrids between these two fundamental approaches would be particularly inte-
resting.

The majority of all product development tries to improve existing products. A common
criticism against all structured approaches to modularity is they work best for existing products. Is
this perhaps a misconception? We ask whether MFD and DSM can be used on novel product types
at an early phase of product development. MFD and DSM are applied to the hybrid drive train of a
Forwarder. The output of the selected approaches is compared and reconciled, indicating that
conclusions about a suitable modular architecture can be derived, even when many technical
solutions are unknown. Among several conclusions, one is the electronic inverter must support
several operating modes that depend on high-level properties of the drive train itself (such as
whether regeneration is used). A modular structure for the electronic inverter is proposed.

Module generation in MFD is usually done with Hierarchical Cluster Analysis (HCA),
where the results are presented in the form of a Dendrogram. Statistical software can generate a
Dendrogram in a matter of seconds. For DSM, the situation is different. Most available algorithms
require a fair amount of processing time. One popular algorithm, the Idicula-Gutierrez-Thebeau
Algorithm (IGTA), requires a total time of a few hours for a problem of medium complexity (about
60 components). The research question is whether IGTA can be improved to execute faster, while
maintaining or improving quality of output. Two algorithmic changes together reduce execution
time required by a factor of seven to eight in the trials, and improve quality of output by about 15

percent.

Keywords Language
Clustering Algorithm, Design Structure Matrix, Modular Function English
Deployment, Product architecture, Product family, Product platform
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ABBREVIATIONS

Abbreviation Term

CR Customer Requirement

DP Design Parameter

DPM Design Property Matrix

DSM Design Structure Matrix

FR Functional Requirement

GA Genetic Algorithm

IGTA Idicula-Gutierrez-Thebeau Algorithm

ITC Improved Termination Criterion

MD Module Driver

MIM Module Indication Matrix

PMM Product Management Map

PP Product Property

QFD Quality Function Deployment

SMA Suppressing Multicluster Allocation

TS Technical Solution
NOMENCLATURE

Term Definition

Approach to Modularity

A structured approach where data is collected, analyzed, and
transformed to predict the best Modular Product Architecture

Cluster (noun)

Collection of one or more Elements

cluster (verb)

generate a set of Clusters by means of an algorithm

Degree of fit between a selected Element and each of the

ClusterBid existing Clusters; calculation includes a punishment for
ClusterSize

ClusterSize Number of Elements in Cluster

Component Simple physical entity which has Interaction with other

simple physical entities

Component-DSM

Matrix of Interactions between pairs of Components

Core

Part of IGTA/IGTA-plus/R-IGTA responsible for moving
randomly selected Elements from one Cluster to another, and
keeping track of best solution so far

Customer Requirement

statement of the usage experience the customer desires in
their use of the product

Dendrogram

Hierarchical representation of the degree of Product Property
or Module Driver similarity between Technical Solutions

Design Parameter

term used by Nam Suh, corresponds to Product Property or
Technical Solution




Design Property Matrix

matrix used to describe the relative impact of design changes
to Technical Solutions on the performance of the product, as
captured by Product Properties

Design Structure Matrix

matrix representation of a system or project in which all
constituent components or activities are listed together with
their corresponding dependency pattern

Element

Component or Technical Solution

Extra-cluster interaction

Interactions between Elements that belong to different
Clusters

Function

Transformation of energy, information, or material

Functional Requirement

term used by Nam Suh, corresponds to Customer
Requirement or Product Property

Function-structure diagram

Flowchart showing functions and the exchange of energy,
information, or material between them

Function-structure heuristics

Three rules of thumb (Stone, Wood & Crawford 2000)
applied to a function-structure diagram to yield Modules

Genetic Algorithm

search heuristic that mimics the process of natural evolution,
by generating solutions using mechanisms such as
inheritance, mutation, selection, and crossover

Heuristics

Rule of thumb that usually yields good results

Hierarchical Clustering
Algorithm

algorithm that operates on a matrix to generate a hierarchy of
clusters with similar elements, the output of which is usually
presented as a dendrogram (tree-graph)

Idicula-Gutierrez-Thebeau
Algorithm

algorithm for clustering Component-DSM

IGTA-plus

Modification of IGTA that includes two algorithmic
changes, SMA and ITC

Improved Termination
Criterion

selecting candidate Elements from a list, and subsequently
deleting the Element from that list

Exchange of energy, information, material or an association

Interaction of physical space and alignment
Surface or volume between two or more Clusters, through
Interface which Interaction may take place; if no Interaction takes

place, there is no Interface

Interface Matrix

Matrix of Interactions between pairs of Modules

Intra-cluster interaction

Interactions between Elements that belong to the same
Cluster

Modular Function
Deployment

modularity method that involves populating and analyzing
three interlinked matrices used to describe the relation
between Customer Requirements, Product Properties,
Technical Solutions, and Module Drivers




Modular Function
Deployment (MFD)

Modularity method that involves populating and analyzing
three interlinked matrices used to describe the relation
between Customer Requirements, Product Properties,
Technical Solutions, and Module Drivers

Modular Product
Architecture

Representation of a product or family of products as a
collection of Modules, which allows for efficient
development, production, and marketing

Module

Cluster that forms a functional building block with specified
interfaces, selected for company-specific reasons

Module Driver

one of 12 pre-defined strategic reasons for creating
interfaces, used for describing the business intent of the
product structure

Module Indication Matrix

matrix used to describe the strategic intent of individual
Technical Solutions, using Module Drivers

Multicluster allocation

Feature of IGTA where an element may be assigned to more
than one cluster if the Multicluster condition is true

Multicluster condition

More than one Cluster returns the highest ClusterBid in
IGTA

Product Management Map

visualization of the interlinked matrices QFD, DPM, and
MIM used in MFD

Product Property Precise quantifiable statement of what the product has to do
Quality Function matrix used to describe the relation between Customer
Deployment Requirements and Product Properties

Modification of IGTA-plus to cluster simultaneously with
R-IGTA regard to Component-DSM and DPM/MIM, using ratio of

TotalCost and Reangularity as an optimization criterion

Reangularity

A metric between zero and one that measures the degree to
which a design is uncoupled, extended here to cover
Modules

Suppressing Multicluster
Allocation

allowing an Element to be assigned to one and only one
Cluster

Technical Solution

Physical entity designed to embody Product Properties and
carry a required function in the product

Thebeau’s algorithm

(same as) IGTA

TotalCost

Sum of all Intra and Extra-cluster interactions, with an
additional punishment for the latter
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1 INTRODUCTION

This chapter presents the background information
to modularization and clustering, the terminology
used, the objective and research questions, as well
as briefly describes the used research methodology
and outlines the structure of this thesis.

1.1 Product architecture

This thesis deals with product architecture. Architecture is a familiar term, and we typically
think of buildings or floor plans when we hear it. The term “product architecture” is much
less known among a general audience. Wikipedia does not offer a definition, as shown in
Figure 1 (Wikipedia 2012).

Figure 1. Product Architecture is not defined by Wikipedia

Among design engineers, the term is well known, but still defined differently. The following
definition of Product Architecture is taken from (Wyatt, Wynn, Jarrett & Clarkson 2012):
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“Product architectures are the abstract conceptual structures underlying the functioning of
engineering artefacts, and their design is an important but difficult task (Ulrich 1995).” The
original definition (Ulrich 1995) reads “Product architecture is the scheme by which the
function of a product is allocated to physical components.” The terms “product family” and
“product platform” are preferred by some researchers, as in the following segment from
(Simpson et al. 2011): “A product family is a group of related products that are derived from
a common set of components, modules, and/or subsystems to satisfy a variety of market
applications where the common ‘elements’ constitute the product platform (Meyer &
Lehnerd 1997)”. The desire to achieve commonality is one of the reasons for creating product
platforms, but not the only one. Common unit (Erixon 1998) is one twelve Module Drivers
used to define the strategic intent of a proposed Product Architecture. (Erixon 1998) states
that “product architecture is mostly used in the US and is used here synonymous with product
structure”. Product structure is defined (Erixon 1998) as “the elements of a product and their
relations (Tichem & Storm 1995)”.

1.2  Modularity

The terms “module” and “modularity” are often used in the context of product architecture,
and there is often some confusion with regard to the meaning of these terms. This is
confirmed by (Yu, Yassine & Goldberg 2007), who state simply that the term modularity is
an ambiguous and elusive notion that has been loosely used in different ways by different
people at different times. This clearly is not a good situation. In the context of the present
thesis, we will impose restrictions on the term “module”, to make it more well-defined and
useful. Modules shall be defined as groups of technical solutions that carry out one or several
functions, and which have a standardized interface to the world around it. This is consistent
with (Erixon 1998). Modularity entails standardizing the interfaces, which implies one
module may be interchanged for another, allowing for a different performance levels or
styling, for example. Modular product architecture may be viewed as a subset of product
architecture.

1.3 Approaches to modularity

Modular product architectures are generated through the application of a pre-defined method.
An approach to modularity includes the method by which the architecture is derived — but it
covers a bit more than just the method itself. In actual projects, the author has found that a
cross-functional team is a very important success factor, as is solid management
commitment. Very often, the work happens in a workshop format. The method itself is the
way the data is captured and processed, which is a slightly more narrow concept.

1.4 Modularity versus Standardization

Product architecture is often approached with component standardization. Modularity and
standardization are not the same thing. The graphic in Figure 2 highlights the main
differences in these two views.
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Complexity costs!

Spend time where
customers care!

Interfaces limit
"propagation of

change"
m Create variation by Integration of QFD Explicit
Modularization bl creates customer management of
combining modules .
focus interfaces

Standardization

No variation
allowed, may lose

sales

Average customer
assumed, variation

ignored

Component-based -
no interfaces

Figure 2. Modularization and Standardization are not the same thing

We might say that modularization embraces variation and deals with it through the active
management of standardized interfaces. Standardization tries to find an average performance
level, which ultimately may generate dissatisfied customers and reduced sales.

1.5 All approaches have to model reality

All approaches to modularity have to build a model of reality, that captures the aspects of the
product that have implications for the architecture (where the interfaces are required, for
example). Although some of the details differ between different approaches, there are
similarities. The graphic in Figure 3 tries to show, on a very high level, what product
architecture approaches have in common.

Figure 3. Architecture work

On the far left, we see an icon that tries to represent the view of reality: this may be a
previous generation of products with characteristics similar to the new one, or a competitor’s
product. Whatever the source of data, team representatives from Engineering or Marketing
functions in the company gather data about the product, its usage, the customers etc, and then
sift through the data to determine what is important in the project. Some data will be
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discarded at this point, because it is out of scope or does not fit into the representation of the
product, be it a matrix, a drawing, a flowchart etc. What is left may be a list of Customer
Requirements, Product Properties, desired Functions or Features, cost data for concept
selections etc. Some choice is typically made about the way this data should be represented.
One or several representations may be available, including matrices, flowcharts, product
sketches etc. If the objective is to make predictions about the best possible modules, it usually
becomes necessary to select some type of pre-defined representation. Figure 3 shows two
such options. The upper is a matrix representation, which has computer algorithm support for
generating modules. The lower is a function structure diagram (a type of flowchart). When
diagrams are used, the work may be conducted on paper, and module generation may be
manual, using a set of pre-defined heuristic rules for what constitutes good modules.
Computer algorithms operating on matrix representations include such methods as Design
Structure Matrix, DSM, and Module Function Deployment, MFD. Depending on the
algorithm, the output may be a sorted matrix or a Dendrogram, as shown in the graphic. The
computer-generated output is analyzed by the team members, and decisions are made about
modules. Typically, there are many iterations of changing data and resorting before the
output is satisfactory.

Once the output is deemed useful, it is documented in some form, and goes to detailed
design, where three-dimensional representations using Computer Aided Design are often
used.

Although this description of reality is a simplification, the purpose is to position the present
thesis, and to define the domain of problems we are addressing. This will be detailed in the
next section.

1.6 The author’s interest in modularity

The author’s interest in the topic is not only academic. Since December of 2002, the author
has worked as a product architecture consultant (at Sweden-based consulting firm Modular
Management) and has been involved in 15-20 client projects. Almost all of the research
topics were inspired by real problems encountered in the consulting work. There are some
obvious similarities between academic research and the “research” that happens in real
projects through the application of new ideas that get conceived and tried out. One similarity
is that project “research” and most academic research both try to improve existing methods.
The main difference may be in the emphasis placed on scientific rigor. In project application,
the primary objective is to generate a useful output, to solve the problem immediately at
hand. Academic research builds on results by other researchers and aims to generate output
that improves the methods by which products are conceived or designed.

One very important assumption has been that all the research topics in the present thesis have
some practical application. There is a heavy slant toward the issue of practical usage of all the
methods presented.

There have been three types of influence on the research topics in the present thesis.

The first and foremost is the experience gained in actual project work with real clients.
Working with a client has many advantages and very few disadvantages. The advantages
include a strong focus on output and access to detailed subject matter knowledge. A possible
disadvantage may be the time pressure.

The second is product architecture training experience. The author was involved in a long
engagement with a global client over the course of about five years. As a part of this
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engagement, the author devised training material and conducted training with hundreds of
engineers in Europe, USA, Mexico, and Brazil.

The third is contact with the academic world. The author has attended conferences and
authored papers in conjunction with other researchers.

1.7 Research questions

The unifying theme of the four research papers included in the present thesis is whether we
can improve the methods used for generating modular product architecture. Each of the
papers addresses some facet of this overall theme.

e Can we supply additional information to improve the output of the methods (MFD, in
particular)?

o Can we define selection criteria objectively, yet incorporate experience-based criteria?

e How well do the methods (MFD and DSM, in particular) work for new types of
products at an early phase in the product development process?

e Can the current computerized algorithms for module generation be made to run faster
and generate better results (DSM, in particular)?

1.8 Delimitations

The present thesis deals with structuring of products at an early phase of the development.
This is applicable both to existing products and novel product types.

Only physical products are within scope. Although some aspects of modularity may be
applicable to abstract products such as bundles of services, that is not covered here. The
interfaces between modules are physical, and involve spatial relations or the transfer of
energy, matter, or information through a physical contact surface or a defined volume, which
implies we are not concerned with the structure of software.

We assume modularity is applied to products where the existence of standardized interfaces
does not present a possible detriment to the performance, as may be the case in the design of
anthropomorphic robots, for example, where the distribution of weight is extremely critical. It
may be possible to argue that highly integrated products with tough requirements on
reliability fall into that category too, as may be the case with pacemakers, for example.

Finally, the theories of modularity typically work best above a certain level of complexity.
Product design for extremely simple products probably do not require modularity. This may
be the case for a coffee filter, for example, where a solid understanding of filtration is more
useful.

1.9 Interrelation of topics

The overall theme of the four papers appended in the present thesis is improved methods. We
consider MFD, DSM, and Function-Structure Heuristics to be fundamental methods. Each
fundamental method has a set of advantages and disadvantages, which is explored in Paper B.
One path to improved methods is to combine two or more fundamental methods into a hybrid
method. As discussed in Paper B, hybrid methods usually have a new set of disadvantages
that are absent in the methods upon which they build. Most methods represent data in one of
two forms, a matrix or a graphical format such as a function-structure diagram. Paper A
explores Product Property types used in one particular matrix-based method, MFD, and
proposes a scheme whereby features of Function-Structure Heuristics may be integrated.
Paper C applies two matrix-based methods, MFD and DSM, to a novel product in an early
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phase of product development, and makes a qualitative comparison of the outputs. Paper D,
finally, focuses on an important clustering algorithm for DSM and presents improvements
that increase the quality of output while making the computations significantly faster.

1.10 Relation to other concepts and researchers’ work

Paper A integrates features of Function-Structure Heuristics (Stone, Wood & Crawford 2000)
into MFD (Erixon 1998). Paper B builds on the works by (Keller & Binz 2009), (Huang
1996), and (Holttd 2005), but instead of simply dictating a set of evaluation criteria, a method
is shown whereby external criteria may be integrated with experience-based criteria. Paper C
evaluates the usefulness of MFD and DSM when applied to a novel product in an early phase
of development, when relatively little is known about the constituent Technical Solutions.
The most common type of case application used in academic studies involves fairly well-
known products. Paper D improves the work by (Thebeau 2001B) by proposing
computational improvements that radically improve speed and quality.

1.11 Papers in the context of product development process

Figure 4 shows the five papers laid out in a product development process.

Figure 4. Papers A-E in the context of product development

Paper B involves selecting the right approach, e.g., MFD, DSM, Function-structure
heuristics, or some hybrid approach. Papers A, C, and D all deal with the generation of a
modular concept: Paper A looks at the role of properties, paper C examines the value of a
qualitative comparison, and paper D proposes specific algorithmic improvements that apply
to DSM. Once the concepts are generated, the team would attempt to determine the required
performance levels for all the modules (“module variants” in MFD terminology).

1.12 Thesis outline

Chapter 1 is the justification of the research questions, as well as the context, both to the
work of other researchers and the interrelation of the topics themselves. Chapter 2 goes into
some definitions we use. Chapter 3 describes the methodology. Chapter 4 is a summary of the
papers. Chapter 5 is a discussion. The author attempts to assess the value of the scientific
contributions in each paper. Chapter 6, finally, outlines some possible future work.
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2 FRAME OF REFERENCE

This chapter provides some fundamental
theory of modular product architecture.

2.1 Introduction
In this chapter, we will look more deeply into the theory on which this work relies.

2.2 Fundamental concepts

2.2.1 Theory of Technical Systems

The following graphic from (Hubka & Eder 1996) shows how Product Properties — in a very
broad sense — fall into larger categories that capture the Purpose of the Technical System, the
Life phases, and finally the relation between the product and its environment, Humans and
Society. Note especially that several properties in Life phases are used as Module Drivers in
MFD.

15



" PUE SIUEINSIIE AJI[END Sjuewd G_._.D._g ‘h_nr:.uaa_v N /4'

-Juwod pue Ajijiqedes Alaaleq BUILOISSILWOIDP -

@ueleaddy

sajadoad bujuueld -sdoid juswuosiaue @ suewny 0}
‘N2 -.-U—._ sindyno Asepuoda
snuanpe g Aeydsip k sjuswalinbas uew
__énn.__o%_._-b Ayajes soje.
- 1'bunms s uado Buiaq Joj Ay
puesado 03 pajddns spdaye - 18q Joy A
F sepsedosd N2 - uomIE [BUIAIUI JO FPOW - seledoud
uonnqulsig SUOIPUO) UOKDE - SUOHEJadO UOREWIOJSURI] - EO:OD.-M
SIS uonoe - adipunid |eaibojouyday -
sojsaoeIeyd ubisaqg A
20 o:tﬂg . \ soubisap
‘lo13uod Ayijen |
.u_._.nucu__n:_ .u_._t_.ru-m $IIURIS|0] PUR FIRUNS - A Buuaauibua juswuoliAue
-nuew ‘asueinsse Buunyoeynuew ‘sjeusiew - \  Jojonuod yaup 'RiM uopeujpIoaI -
A3ijenb ‘u) BuiAng (@z215) suoisuawip - \ 4@pun sansado.g 44N 40j0d ‘W0 -
(adeys ‘pur) wioy - sUAWII -
se|edosd P gl s ovf _ b soJedoad sensedosd
uunoejnuey Juawabuesse - "y |eusaul
sjuauodwos - aunPnas - -
8 saiedosd ubisep Asejuawa|3 ! 2
suawainbas Buiag 1 ‘sag3
‘syuswalinbay Absa od I sjuaned
g 9deds ‘soueusIUIRW 1. - UORNjlod - ! Jo s2p0d S|
40y Ajiqeans ‘uedsay)| suorm.- ..M...unnu S s Aaqe
% 2yl ‘Aisjes z____a-iz ssaupIey - buBss - g ."”._."_..._“
saiedosd ubisep |esauan o1
. uonendas 1394
23 JUBWUOIIAUS TTTEUeR5UN] BUB oM - maJ “AyiAanpoud m
Joy Ajijiqe3ins ‘azis ‘sucisuawip suonduny Aserjixne - ‘s|eiDURUY - SI0JEIIPUI IWOUODT
un; “Aedes peo| Jamod ‘paads suopduny buyjadosd - Bunesado ‘Aiquiasse ‘Gulimdejnuew -
lewopag suoauny Bundasuuod - T
ajep *auny Buijjonquod ‘Buneinbau -
ung 4o Buyyin

oneyisay

Figure 5. Property types according to (Hubka & Eder 1996), please rotate page to read
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2.2.2 Quality Function Deployment (QFD)

According to (Hauser & Clausing 1988), QFD originated in 1972 at Mitsubishi’s Kobe
Shipyard and was perfected over time by Toyota and others. The QFD Institute (QFD
Institute 2012) lists Dr. Yoji Akao as “one of the founders of QFD”. One of Dr. Akao’s
publications is (Akao & Mizuno 1994).

The following graphic shows a comparison of a QFD as it normally appears in a full House
of Quality (top), image from (Hauser & Clausing 1988), and in MFD (bottom). Note the QFD
as used in MFD does not feature the mandatory “roof” used in House of Quality. Conflicting
requirements are dealt with in MFD by Technical Solution decomposition, which happens
when the DPM is populated. There is no guaranteed solution to built-in conflicts, though;
MFD just offers another way of looking at these conflicts.
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There has been academic criticism against QFD (Short et al. 2009), as well as a commonly
encountered skepticism based on the opinions that (a) there is a massive work effort to
populate the matrices and (b) it seldom leads to anything. The implementation of QFD in
MFD addresses both of these points. First, it reduces the work load by cutting out the roof, at
least as a mandatory component. Second, it uses the Product Properties (referred to as
Engineering Characteristics in the graphic in Figure 6) to the Technical Solutions through the
use of the Design Property Matrix, thereby “closing the loop” and making the QFD more
conclusive. (Bylund, Wolf & Mazur 2009) propose a variation of QFD they call Blitz QFD,
which is faster.

2.2.3 Hierarchical Clustering

Hierarchical Clustering (see, for example, Romesburg 2004) is used to bring structure into
large two-dimensional arrays of data, where there is an underlying pattern waiting to emerge.
A number of objects are described on a pre-defined number of dimensions, meaning each
object gets a score on several pre-defined “questions”. The values can be continuous or
discrete. The values are seen as coordinates in a multidimensional space. Points are
considered close to one another if the distance between them is low. Distance can be
calculated using the Pythagorean theorem (square root of the sum of the squares of the
differences of each coordinate-pair) or some other metric. In the end, the distance relations
are shown in a Dendrogram (tree-graph), which allows the person interpreting the data to
view the points as individual points, clusters of points, clusters of clusters etc.

In MFD, hierarchical clustering is used to generate Modules. Modules are clusters of
Technical Solutions that seem similar in their Product Property and/or Module Driver scoring
patterns. The use of dendrograms in MFD to do clustering was pioneered by (Stake 2000) and
has since been studied by others (Holtta-Otto et al 2008). Dendrograms do not prescribe the
number of modules — that is left up to the person interpreting the dendrograms. Dendrograms
can be used for Quality Assurance work during MFD, not just for module generation. Any of
the the three key matrices in MFD can be analyzed using dendrograms.

The following graphic shows how a DPM may be transformed into a Dendrogram using
hierarchical clustering. The example uses a simplified cordless hand vacuum cleaner.
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Clustering algorithm is applied to ... and the resulting dendro-
Design Property Matrix (DPM)... = gram is a key input to
2 module generation

Figure 7. How a DPM is transformed into a dendrogram

2.2.4 Design Structure Matrix

Although this thesis is somewhat tilted toward MFD, two of the papers (C and D) deal with
DSM (Eppinger, Whitney & Smith 1994). Clustering works on a completely different
principle in DSM, and Hierarchical Clustering cannot be applied. The reason is DSM clusters
are defined in a way that is fundamentally different. While MFD is concerned with similarity
(e.g. scoring patterns are similar), DSM is concerned with coupling. The degree of coupling
between two Components (this is the DSM terminology corresponding to Technical Solution)
is defined as the amount of Interaction between them. A good module is one where the
Components have strong Interactions between them, within the module, but weak or no
interactions with Components in other modules. That is the only clustering rule in DSM, no
other consideration is made, which implies that unless some explicit mechanism is added to
deal with Customer Requirements or Company Strategy, those aspects of module generation
are absent in DSM. Therefore, DSM may be thought of as an engineering driven approach.
Attempts have been made (Blackenfelt 2000) to extend DSM with company strategy, and
although it is possible to do so (two matrices are required), module clustering becomes more
complex, and no algorithm is available.

A DSM matrix is square, whereas a DPM in general is rectangular. As pointed out by (Li
2011), the techniques for DSM clustering cannot be directly adapted for the clustering or
decomposition of a rectangular matrix due to different matrix formats.

The graphic in Figure 8 shows a network of interconnected nodes (Components) and the
DSM representation.
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Figure 8. DSM representation of connected Components

Algorithms for clustering DSM have been proposed by (Thebeau 2001A, Thebeau 2001B)
and others. You may read more about that in Paper D.

2.2.5 Function structure heuristics

Function structure heuristics were proposed by (Stone, Wood & Crawford 2000). To use
these heuristics, you would first represent the product or the system as a Function Structure
diagram. Figure 9 shows a very simplified function structure diagram of a cordless hand
vacuum cleaner.
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Figure 9. Function structure diagram of a cordless hand vacuum cleaner (simplified)
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Traditionally, thick lines are used for matter, thin lines for energy in different forms, and
dotted lines for information or signals. Ideally, each function should be described using an
action verb that details the type of transformation taking place, and a noun that defines the
object of that action. A good example might be *“generate suction”. The input might be
energy in the form of rotational torque, and the output might be the pressure differential
between inlet and outlet on the rotating impeller.

The heuristics proposed by (Stone, Wood & Crawford 2000) are shown in Figure 10. The
Dominant flow heuristic predicts that functions involved in the same flow of matter, energy,
or information should form a module. In a handheld vacuum cleaner, there is a flow of air
from nozzle through a duct to the vortex generator: this forms a module, as predicted by
Dominant flow. The Conversion-transmission heuristics predicts that when a flow is
transformed from one type to another, and subsequently transmitted, those functions should
form a module. Mechanical torque is generated in an electrical motor and then transmitted to
through a shaft: this forms a natural module by that heuristic. Branching-combining, finally,
dictates an interface where a flow branches or combines. A good example may be the bus in a
computer, where boards can be added for increased memory, improved graphics etc.

Figure 10. Function structure heuristics (adapted from Stone, Wood & Crawford 2000)

2.2.6 Clustering algorithms for DSM

IGTA (ldicula 1995; Gutierrez Fernandez 1998; Thebeau 2001A) was translated from C into
Matlab by (Thebeau 2001B). The algorithm attempts to minimize the value of an objective
function, TotalCost, by moving one element at a time. The value of TotalCost is a
measurement of the “goodness” of the configuration: the lower the value, the better. The
algorithm is stochastic, meaning elements are picked at random. An approach similar to
(Thebeau 2001B) but with a different objective function was used by (Whitfield, Smith &
Duffy 2002).
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Genetic Algorithms (GAs) were explored by (Yu, Yassine & Goldberg 2007) who proposed a
set of metrics for DSM optimization, building on information theoretical metrics, combined
with GA. An improved metric was introduced by (Helmer, Yassine & Meier 2010), also with
GA.

An algorithm which may be adapted for the purposes of clustering was presented by (Li
2011). The associated Matlab source code is publicly available (Li 2010).

Architecture generation is explored by (Wyatt, Wynn & Jarrett 2012) using a method that
could be applied before DSM. Their algorithm generates possible solutions by adding and
deleting components or relations, in accordance with certain predefined rules. Their software
environment uses the Cambridge Advanced Modeller software framework (Wynn et al.
2009).

2.2.7 Modular Function Deployment (MFD)

MFD uses three interlinked matrices to integrate the Voice of Customer, the Voice of
Engineering, and the Voice of the Company to predict a modular product architecture.
Building on research conducted in the 1990s, this approach to modularity was described by
(Erixon 1998) and subsequently improved (Nilsson & Erixon 1998) with the addition of the
Design Property Matrix (DPM). Paper A offers a brief description of MFD and the three key
matrices, the QFD, the DPM, and the Module Indication Matrix (MIM), which interrelates
the Technical Solutions with the company strategy, using Module Drivers. MFD is compared
qualitatively with four other approaches in paper B.

The graphic in Figure 11 shows an example simplified Product Management Map (PMM) for
a cordless handheld vacuum cleaner. The first matrix, the QFD, interrelates Customer
Requirements and Product Properties. Product Properties should be measurable, controllable,
and solution-free. The QFD in this example uses shaded circles to signify strong, medium,
and weak relations, in addition to no relation (no circle). A dark circle, such as the relation
between “Can pick up all the dirt” and “Power (V) signifies that there is a strong relation. A
change in the battery voltage — which determines the available power — has a strong impact
on the ability to pick up dirt.

The second matrix, the DPM, relates Product Properties and Technical Solutions. Technical
Solutions embody functions required in the product. Battery voltage is provided by a battery
pack, for example. To change the battery voltage, we would expect to make modifications to
the battery pack, or possibly select a new battery technology with a different cell voltage.

The third matrix, the MIM, relates Technical Solutions to Module Drivers, the MFD-specific
term for the company strategy. This example uses five of the twelve Module Drivers. The
significance of the scoring in the column for Common Unit, for example, is those Technical
Solutions come in one single version only, e.g., all the cordless handheld vacuum cleaners we
plan to build using our modular product architecture use the same Clamshell, Exhaust grate,
Microswitch, Release spring, and Impeller.

To generate viable modules, MFD looks at the scoring of the DPM and MIM, to find
Technical Solutions that are similar in their scoring-patterns. For small matrices, this can be
done visually, but for larger matrices, statistical software is typically used. By visual
inspection of Figure 11, we can see the scoring for Power button, Styling handle, Escutcheon,
and Dust bin are virtually the same: they all have color-variation and the Module Driver is
Styling, e.g., we want to use these Technical Solutions to create visual variation. Could they
be the same module? To determine whether that is a viable module, something needs to be
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known about the product geometry. The Power button moves in relation to the handle, so that
needs to be a separate module. The Dust bin needs to be removed and emptied, so that has to
be a separate module. The Styling handle and Escutcheon are physically close, and could
easily be designed as one single piece, and would make a useful module. The decision to
integrate them might also save time in assembly.
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Figure 11. Example Product Management Map (PMM) for cordless handheld vacuum cleaner
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2.3 Concepts summary
Figure 12 summarizes the theory used in each of the papers.

D

Theory of
Technical Systems
QFD

Hierarch. Clust.
DSM

Func. Struct. Heur.
Clustering for DSM
MFD

Figure 12. Summary of theory used in each of the papers
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In the case of “desk research”, this model may look a little different. For example, we have
no scientific measuring device for collecting data from experiments. An experience from a
project is a type of experience, but the learnings are of a qualitative nature, and much less
quantitative than in the natural sciences, for example.

A diagram outlining the steps of the qualitative research process can be found in (Backman
1998). The graphic in Figure 14 has been translated into English from the original Swedish,
by the author.

Question \

Report ] [ Lit. survey ]
I_Interpretation I Analysis
Anays/\ /
Hypothesis Problem

Question

Observation

Figure 14. Scientific research process, qualitative, after (Backman 1998)

Using the structure from the diagram above, let us step through the research process used in
this thesis.

3.1.1 Question

In qualitative research — as pointed out by (Backman 1998) — the question is often of a
practical or applied nature, and the question may be stated in terms of “how” something
happens or “why” something happens or is the way it is. In the present work, we ask
ourselves how something we know how to do can be done better, more efficiently, or be
applied to a new domain of problems:

e How can we improve the selection of properties in MFD, to obtain results that obey
physics and the required product geometry?

e How can we devise selection criteria for the purpose of method evaluation, without
relying exclusively on subjective criteria?
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e How can we apply existing tools like MFD and DSM to novel product types in an
early phase of product development?
e How can we make DSM clustering algorithms faster?

3.1.2 Literature survey

The literature survey does not happen once, typically. The papers in the present thesis have
been influence by impressions from papers delivered by other researchers at conferences,
books, exchange of ideas with other researchers and project team members, professional
colleagues, own ideas accumulated from previous projects etc. Section 2.2 lists the main
influences on the works in the present thesis.

3.1.3 Analysis / object of study

The term “analysis” is in reference to the choice of object of analysis. In a case study, the
object of analysis would be data from the project. Thus, in papers A, C, and D, there was a
clear object of analysis. Paper A was the modular structure of a cordless hand vacuum
cleaner, paper C the Forwarder with hybrid drive train, and D the new proposed algorithm
operating on a cordless hand vacuum cleaner again, compared to the old algorithm. In paper
B — the paper that aims to create selection criteria, the object of study was the set of
modularity methods itself.

3.1.4 Problem / question

In papers A, C, and D, the formulation of the research question was relatively straight
forward:

Paper A — problem “statistical methods for generating modules generate poor output” —
question “how can we introduce new data to make the output more useful?”

Paper C — problem “existing methods are usually applied to products that are well understood
and have been around for some time” — question “how can we apply them to new products at
an early phase in development?”

Paper D — problem “DSM clustering algorithms are slow, and for practical use in real projects
they would have to be much faster” — question “how can we make modifications to increase
speed substantially?”

In paper B, the research question shifted somewhat as the research was conducted. The
original research question was to attempt to assess, objectively, which of the existing
fundamental or hybrid approaches to modularity is best. This research question does not seem
to have a clear-cut answer, for at least two obvious reasons: first, it depends on the situation
and second, it depends on the criteria used for the evaluation, and selection of criteria is
mostly subjective. To determine the criteria, a number of academic sources were used, but the
author had a desire to (a) integrate experience-based criteria and (b) condense the list to a
new set of exhaustive but orthogonal (e.g., independent) criteria. To create such a new list of
criteria, a method based on pairwise comparison was used, followed by statistical processing.
That method became the real focus of the research paper.

3.1.5 Observations

With the exception of paper D, which was conducted in a client setting (e.g., a real project),
the observations are made “at the desk”. In paper A, the output of a standard MFD was
compared with the output from an enhanced MFD, using the new properties proposed in the
paper. In paper B, the data was compiled and analyzed by the author. In paper C, the
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predicted modular structure of the hybrid Forwarder was analyzed “at the desk”. Finally, in
paper D, the comparison of the execution times and output of the two algorithms was done by
the author using his own computer equipment and software setup.

3.1.6 Hypothesis

The hypothesis phase mostly preceded the observation phase. The only exception was paper
B, see below.

The hypothesis in paper A was that geometrical data, dominant flow, options, and module
driver compatibility could all be added to MFD to make increase the likelihood that output
would be useful. The hypothesis of the usefulness of the geometrical data was based on the
2003 Operator Seat client project (unpublished material). The usefulness of the dominant
flow heuristic was based on work with function structure diagrams for the purpose of
developing modularity training material with a major client during 2004-2006.

The hypothesis in paper B was formulated after the author went through the academic
material on the topic and discovered that each author had a unique set of criteria. The
hypothesis was that it should still be possible to ascertain how similar any two criteria are,
and that this could be done with a mental process since the statistical process would even out
any individual fluctuations or inconsistencies.

The hypothesis in paper C was MFD and DSM could both be used, but some qualitative
interpretation of the output would be required.

Finally, in paper D, the hypothesis was the Matlab code of IGTA could be restructured to
take advantage of the matrix operations more efficiently, and that memory could be
introduced to make the algorithm converge more rapidly.

3.1.7 Analysis / interpretation

In the model presented by (Backman 1998), the analysis and interpretation phase is
emphasized as potentially being the most demanding in qualitative research. Papers B and C
are highly qualitative, whereas papers A and D are more quantitative.

Paper A — analysis is based on the number of “flat subtrees”, as described in the paper. The
interpretation is with more data available to the hierarchical clustering algorithm, the output
thus generated is more conclusive.

Paper B — qualitative assessment of data derived as numbers, but really based on pairwise
subjective comparisons.

Paper C — qualitative comparison with a discussion of pros and cons of the proposed
architectures generated by MFD and DSM.

Paper D — quantitative assessment based on the timed execution time of each version of the
algorithm. Quality of solution obtained was based on a plot of the calculated “cost” of 10 000
runs.

3.1.8 Report

All the papers were submitted to conferences. At the time of writing (May 2012), paper D has
been accepted for publication in August of 2012. Conference papers go through peer-review.
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Construction Vehicles. This client did not manufacture seats. Seats were purchased from
seven different suppliers, and there was a total of more than fifty seat types available. Not all
seat types fit in all vehicles. In addition, there were quality issues with many of the models.
The client was interested in creating a modular operator seat, and to select two strategic
suppliers, and get rid of the other suppliers. Modular Function Deployment, MFD, was used
to create the key matrices which then get plugged into a computer algorithm which then
generates proposed modules.

The issue was that an operator seat, in order to be a seat, must obey certain geometrical
necessities. The seat follows the human body, so we would expect a seat to have a seat
cushion, back rest, head rest, and arm rests in certain locations. The modules that came out of
the software did not seem to respect the required geometry of a seat. The algorithm was not at
fault: it was faithfully producing a Dendrogram of the matrix data provided. The problem was
no geometrical information had been supplied, so it was unreasonable to expect the algorithm
to “know” the things a human knows about a seat. Thus, the idea of geometrical properties
was born. The seat was defined into a number of regions. The boundaries between these
regions were called region interfaces. Each Technical Solution in the seat system could be
tagged by how close it needs to be to each of these region interfaces. The seat recliner, for
example, must sit between the seat cushion and the back rest, it cannot sit in the headrest.
When this information was included, the algorithm generated output that made much more
sense, and the general feeling in the team was the new property type thus introduced had been
highly useful.

The second inspiration was an observation from modular product architecture training. The
training material used a cordless handheld vacuum cleaner, the Dustbuster® from Black &
Decker as the example product. Like a seat, this product also has to obey certain geometrical
necessities (for example, the suction and the exhaust cannot be in the same location).

4.2.2 Findings

Paper A presents three results. First, it shows how four proposed new property types, the
Convergence properties, can be used to generate modular product architecture that respects —
among other things — product geometry and the necessary exchange of matter, energy, or
information between Technical Solutions. Second, the paper demonstrates how the proposed
Convergence properties can be represented in a matrix format, including the Dominant flow,
which is normally shown in a Function structure diagram. Third, the paper proposes the use
of “large flat subtrees” as a measure of missing data. Large flat subtrees indicate lack of
information, which generally diminishes the practical usefulness of the Dendrogram output
for purposes of architecture definition.

In addition to product geometry and the exchange of matter, energy, or information, Paper A
also explores how technical options can be integrated, and how module driver compatibility
can be described. Paper A uses a cordless handheld vacuum cleaner as a study object.

4.3  Paper B — Qualitative comparison

4.3.1 Background

Paper A was presented at ICED 2009 in Stanford. At that conference, the author attended a
presentation by a German Ph.D. student, Alexander Keller, whose research topic was quite
abstract indeed: to construct a formal approach by which methods can be evaluated for
efficiency and effectiveness (Keller & Binz 2009). The idea of comparing modularity

31



methods seemed like it would have practical application. Real projects consist of people with
experience of different methods. Positive experience leads team members to want to apply
the method again in their next project. A negative experience might be a deterrent. Very little
time may be used in the actual selection of the method itself. Although project experience has
shown Modular Function Deployment to be useful in a range of projects, we must recognize
that each method has its own set of limitations. The relative strength of MFD may be that it
integrated Customer Requirements and Company Strategy. This is powerful in many projects,
but what if the project scope is pure re-engineering for the purpose of reducing product
assembly cost or material cost? In those cases, Customer Requirements may be out of scope
(e.g., the product must do exactly the same thing), and Company Strategy might be irrelevant
(e.g., do the same thing but at lower cost). In such a scenario, a method focused on the way
components actually interact, such as DSM, might be more relevant.

The problem in evaluating methods, of course, is that the very process of choosing the
selection criteria is tainted by our opinion of what’s important, and that is dictated largely by
the experience we have. A seemingly objective evaluation may not be objective at all,
because the criteria have been selected in favor of one particular method, perhaps with the
objective of showing that particular method to be best! This happens in industry, too, when
engineers using Pugh as a concept selection tool (Pugh 1991) go into the evaluation with a
favorite concept, and select the criteria and weights to favor that particular outcome. (Stuart
Pugh understood this risk and presented his famous method as a concept generation tool. To
discourage use as a concept selection tool, he did not recommend the use of weights.)

Thus, the question became whether we can take evaluation criteria from academic studies,
and integrate those with criteria that we know to be important from experience, to come up
with a comprehensive list of criteria that is a little more objective than what we would get if
we just sat down with a blank piece of paper and started writing. Why not rely exclusively on
academic studies, to avoid any trace of subjectivity? Because projects generate important
learnings. We do not wish to completely discard our experience, but we also do not want the
evaluation to be driven exclusively by experience. Several sources were compared, and using
an approach based on pairwise comparisons followed by hierarchical clustering, a
Dendrogram of evaluation criteria could be generated.

4.3.2 Findings

The paper takes the evaluation criteria from three academic sources and integrates them with
the author’s experience-based criteria, makes a pairwise comparison of the degree of
similarity between each pair of criteria in the combined list, and using a Dendrogram
representation, finds a set of criteria (a) on an appropriate level of detail, (b) that do not
overlap and (c) allow for a qualitative comparison of the methods.

In the second half of the paper, three fundamental methods (DSM, MFD, and Function-
structure heuristics) and two hybrid methods (FS-DSM and elSM) are evaluated by the
author, using the derived criteria. This represents the author’s opinion.

In its conclusion, the paper states that all methods have their unique set of strengths and
weaknesses, and that no single method has only strengths. It is possible to construct hybrid
approaches to modularity, such as the one proposed by (Blackenfelt 2000), but typically these
approaches have a new set of disadvantages. Very often, the hybrid approaches have some
new difficulty when it comes to actual module generation or clustering. The method proposed
by Blackenfelt, for example, assumes manual module generation, and no automatic algorithm
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is proposed, only a three-stage heuristic approach which is shown in Chapter 5. The approach
by (Sellgren & Andersson 2005) uses three matrices in a format similar to that used in MFD,
with two key differences. First, instead of Product Properties, the authors use Functions.
Second, instead of the Module Indication Matrix (MIM), the authors use a DSM to interrelate
the Components. The purpose of the paper is to define this new format and discuss how it
may be used. No suggestion is made with regard to the actual clustering.

Finally, paper C makes the observation or comment that non-matrix based methods may be
inherently more difficult to use in large projects with many interrelated Technical Solutions
or components. This is discussed in Chapter 5.

4.4 Paper C — Modularization of novel machines

4.4.1 Background

The inspiration here came from collaboration with Doctor UIf Sellgren. There was a major
research project at KTH Royal Institute of Technology involving a type of machine called a
Forwarder. Forwarders are used in the forestry industry. Among many other topics, the
possibility of using a hybrid drive system was being explored, mainly for environmental
reasons. Doctor Sellgren proposed that MFD and DSM may both be applicable for this type
of system, and that it may be interesting to see in an “artificial case” how well the output of
these two methods works in practice (and possibly support each other), even if very little is
detail is known about the hybrid drive system.

4.4.2 Findings

In this paper, MFD and DSM are applied to a new type of machine, a Forwarder with a
hybrid drive train. The paper uses MFD with Convergence Properties proposed in Paper A, as
well as DSM clustering, and compares the outputs. The paper compares the output of MFD
and DSM and makes some preliminary conclusions about interfaces on a subsystem-level, in
particular with regard to a modular structure of the electronic inverter using plug in converter
modules that connect to a power bus and receive control signals from a control-unit that
supports several different system configurations. The paper identifies the inverter as the
single most challenging subsystem in terms of its complexity and overall impact on the
performance of the product.

4.5 Paper D — DSM Clustering

45.1 Background

The way this paper came about is probably a good example of the “nonlinear” and sometimes
unpredictable way in which research happens. During the work on another paper, the author
came across different algorithms for clustering a Design Structure Matrix. One, which was
published in 2001, is the inaccurately named “Thebeau’s algorithm”, which builds heavily on
the work by two previous researchers, John Idicula (Idicula 1995) and Carlos Ifiaki Gutierrez
Fernandez (Gutierrez Fernandez 1998). We shall refer to the algorithm as the Idicula-
Gutierrez-Thebeau Algorithm or IGTA for short. Upon reading the thesis (Thebeau 2001A)
the idea was born to extend the formulas to encompass MFD. Although the work of detailing
the algorithm extended over more than a year, the first formulas and simulations conducted in
June of 2010 indicated it could work. The final algorithm was coded in Matlab, and named
R-IGTA, with the R signifying Reangularity (Suh 1990). The actual algorithm runs were
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quite time consuming, and it became apparent the core of the algorithm had to be modified as
to execute more quickly. Two such algorithmic changes were made, resulting in a good speed
improvement. The way these algorithmic changes were made, they could also be applied to
pure DSM clustering, quite regardless of MFD. Thus, the term IGTA-plus was coined to
signify the original algorithm, IGTA, but with the algorithmic improvements that made it
almost eight times faster. This resulted in a paper that only deals with DSM and the algorithm
itself.

4.5.2 Findings

Paper E uses an existing clustering algorithm for DSM based on (Thebeau 2001A) and adds
two algorithmic improvements, increasing the execution speed by a factor of eight, and
improving the quality of the output in the process. The paper shows the improved clustering
algorithm as a flowchart.
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5} DISCUSSION

This chapter discusses the results

5.1 Introduction

The previous section summarized the results of the papers. In this section, we will discuss
some challenges in architecture research and in each of the papers.

5.2  Challenges in architecture research

One of the main challenges in Architecture research is there is no “best” modular architecture
with which we can compare the results. In MFD, the architecture is a balance between
strategic needs captured in the MIM and the “functional” needs captured in the DPM. Since
every company has a unique strategy, the architectures will not come out the same. DPM
represents a pure engineering view, but as pointed out by many researchers, there is not a
single “correct” decomposition of a product, so even the list of Components may end up
being different, leading to different module clusters in the end.

When we gauge the quality or usefulness of the output, we have to apply our judgement, and
that is subjective. As researchers, we may even fall into the trap of viewing our own
particular approach as uniquely well suited. Very rarely do you read a scientific paper that
says “we devised a new algorithm, we tried it out, and it was a massive fiasco”. There might
be ways of mitigating this. One is the approach based on the idea that you let several
independent teams apply two or several algorithms, and then compare the outputs of the
teams, to see if one algorithm consistently seems to outperform the other. That is at least a
scientific approach. The problem is usually, the only people who are willing to participate in
such trials are students, and they are not experienced designers of products, so they do not
represent the learnings you would get with an experienced team of product designers. What
scientists can do is to look at isolated case studies, where a new approach is tried out in a real
project with real designers, but then of course it is very hard to try out several methods. In a
real project, there is often very little time for “playing around”, so once the results are in, the
team will move on. The third approach is “desk studies” where the scientist himself or herself
tries out the algorithm. The disadvantage, of course, is we might view our own proposed
algorithms as fantastic, and tend to overrate them.

So what is the undeniable scientific value in each of the Papers included in this thesis? Let us
take another look, and boil it down to its core.

5.3 Paper A — Convergence properties

The idea of Convergence Properties touches something very important in Architecture
research: what types of data should influence architecture decisions? How might the location
of a proposed interface change, as new information is supplied to the algorithm, or irrelevant
information gets deleted?

Most of the time, the real issue is not too much information, but too little information. Upon
reflection, we might want to word that statement differently, because we are constantly
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flooded with information — so how can there be too little? There is a flood of irrelevant
information, of course, and only a minute fraction is useful in product architecture decisions.
In a real project, we may be presented with dozens of documents and spreadsheets, all with
product or market information, but typically in formats that make the data hard to compare,
and very little is actually useful in predicting interfaces.

When the number of Geometrical properties goes up, the clustering algorithm will tend to
reproduce the existing product structure. The graphic in Figure 16 shows a progressive use of
geometrical properties from no Geometrical Properties to the lower right hand pane where
four Geometrical Properties are used.

Figure 16. Four levels of geometrical information for a cordless handheld vacuum cleaner

As more Geometrical Properties get added, the relative influence of the Product Properties
and Module Drivers decreases, and the clustering output becomes increasingly dictated by the
geometrical structure of the existing product. This is undesired: why would we even perform
clustering if we knew exactly what kind of output we wanted? On the other hand, with no
Geometrical Properties, many proposed clusters may correspond to a bag of disconnected
parts or violate the required shape of the product.

Clearly, there is some kind of “sweet spot” for Geometrical properties. We cannot know a
priori how much geometrical information is required and that can only be determined through
trials. In practical terms, several runs of module clustering can be performed, with different
levels of product geometry, which allows for a comparison and determination.
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5.4  Paper B — Qualitative comparison

The scientific value of this paper is the method used to merge criteria from several sources,
including the author’s own experience, to generate a set of consistent and non-overlapping
criteria for evaluating methods.

Paper B also makes the claim that approaches based on matrices are easier in large projects,
with many Technical Solutions. One approach, which does not use matrices, is based on
Function Structure diagrams. An argument could be made that there is good software support
even for flowcharts, and that this is not a real limitation, even for complex systems. A section
from Tiimo Lehtonen’s PhD dissertation (Lehtonen 2007) is reproduced below (pages 103-
104 of Lehtonen’s thesis). His block-diagram of a tunnel boring machine, reproduced in
Figure 17, is included to give the reader some idea of the practical challenges of creating this
representation, and updating with further detail as required. Not an easy task!

“In the research, we started with applying functional modularity. For this reason, a
functional structure was drawn of the tunnel drilling rig that described the implementation
used at the time. The structure was created in a highly pragmatic manner. The figure below
features power input on the left and the machine control on the right. The presentation was
large in size, and it is not possible to present it in the page format of a dissertation. The figure
below will, however, provide an idea of the size of the modeling.

Figure 17. Lehtonen's block diagram of a tunnel boring machine has about 320 function blocks (Lehtonen 2007)

“The functional diagram of the Jumbo as an ‘as implemented’ model. Power input comes

from the left and the machine control from the right. The figure does not indicate the mode of
operations, but all functions in the moving and the drilling mode are drawn in the same
diagram.
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“The diagram was used to recognize functional modules. However, the work did not yield
results. The modules to be outlined in the diagram could not be implemented in practice in
the assembly structure, and they did not yield a necessary level of variation. This empirical
observation is the same that we deducted with the theoretical example in Chapter 5 [of
Lehtonen’s thesis; bold font by Lehtonen]. After this, we proceeded with the work by moving

on to matrix methods.”

Although flowchart software has functions that rearrange blocks to minimize crossing lines
(“routing”), some human intervention is normally necessary. For products with the
complexity of the drilling machine shown in Lehtonen’s graphic above, flowchart just do not
seem to be a feasible approach. Better then to approach it with a matrix and tag the functions
or technical solutions with the interaction types of interest.

5.5 Paper C — Hybrid drive

This paper tests the hypothesis that MFD and DSM can be used for novel machine types, like
a hybrid Forwarder. There are several sources of complexity in a hybrid drive powered
vehicle. One is the electronics, and one is the drive train itself. A series hybrid is simpler than
a parallel, but a series hybrid is never as efficient as a parallel. A parallel hybrid drive system
has something like the planetary gear in the Prius to add torques from two sources, the
internal combustion engine and (in the Prius case) the MG1/MG2 motor-generator pair. In the
Forwarder project, it was determined that supercapacitors would be used to yield high peak
torques for digging out of the mud. From a theoretical perspective, they behave like batteries,
but from an electronics perspective, they provide much higher peak currents, and may require
other semiconductors, so there are some practical complications there. The paper also
identifies that depending on the architecture of the hybrid drive system (series or parallel,
regeneration or no regeneration), the electronics need to support many operating modes.

In a real project, we would have worked with skilled and experienced power electronics
engineers to devise an architecture for the power electronics, which allows for all these
operating modes. In this academic paper, the author had no such team on which to rely, so
certain assumptions had to be made about the structure of the electronics. In that sense, the
results may not be transferable to reality. The paper predicts that all the power conversion
devices should be, essentially, plug-in units. Is this doable in reality? Hard to say. The author
is aware of no academic papers that detail the structure of the Prius power electronics. Some
documentation is available from Toyota, but it is quite high-level.

If the hypothesis is we can use MFD and DSM, it seems fair to say: yes it can be used in this
context, but there will be more iterations. In a real project, the first conclusion might have
been “try to devise all the power conversion units so they have the same interface to the
power bus and the control bus”. The engineers might come back and say this is not doable.
That would have to be fed back into MFD and DSM, the data rescored and the clusterings
rerun. Would MFD and DSM add value, in this context? Probably, but the real “proof of the
pudding” would be to actually do it with a real team, and that was not possible. Thus, we
have to take the conclusions as indicative. Representations such as MFD and DSM may be
used to predict where new or modified requirements will have an impact on the product.
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5.6 Paper D — Improved clustering algorithm

The improved algorithm for DSM Clustering outlined in Paper D came about in a slightly
convoluted way. As the author was investigating the inner workings of IGTA, for the purpose
of expanding the problem domain to encompass MFD-clustering by including Reangularity
(Suh 1990) in the objective function, it became clear that computational efficiency needed to
be addressed. This new algorithm was given the name R-IGTA, where R signified
Reangularity. A paper discussing R-IGTA is forthcoming.

The upper half of Figure 18 illustrates the logical relation between IGTA, IGTA-plus and R-
IGTA. The lower half, however, shows the sequence in which these algorithms were devised.

Idealized sequence of events

Single problem domain: improvements to control, program structure,
sofiware environment, execution speed, rate of convergence
of coupling-based clustering algorithm

| =

Expanded
o _ problem domain :
IGTA > IGTA-plus Add similarity-
based clustering
(MFD)
A 4
R-IGTA
A
MFD
Real sequence of events
Single problem domain: improvements to control, program structure,
software environment, execution speed, rate of convergence
of coupling-based clustering algorithm
- >
Expanded
_ problem domain :
IGTA IGTAplus Add similarity-
based clustering
t (MFD)
Y
R-IGTA
» R-IGTA
ver. 1
A
MFD

Figure 18. Evolution of IGTA-plus

IGTA-plus was derived from the computationally enhanced version of R-IGTA, essentially
by stripping it of anything related to Reangularity.
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The literature survey conducted as part of writing the paper on IGTA-plus and some of the
research from the R-IGTA work indicated Genetic Algorithms are becoming a more and
more dominant approach for DSM clustering algorithms. One paper (Yu et al 2007) describes
an algorithm written in C++ for clustering a DSM using the principles of GA. An example
problem involving 60 Components is used, and the execution time is listed as “about a day”.
With 57 Components, IGTA-plus is able to perform one complete clustering in 0.34 seconds,
meaning 10 000 complete runs can be concluded in about an hour. As described in paper E, a
large number of runs are usually required to guarantee the best possible solution has been
found. In real projects, the computational efficiency of the clustering algorithm is an issue.
Waiting a full day for the output is inconvenient, especially if we imagine that several
iterations may take place, where data is modified and the algorithm is re-run. GA may be
powerful in many ways, but not nearly as fast.

5.7 Impact of research on consulting

Project work with real clients clearly impacts research: in fact, the topics of research are often
born out of real problems faced in client engagements. To what extent does research have an
impact on consulting? Specifically, to what extent are the research topics described in this
thesis applicable to the context of consulting?

In the experience of the author, new consultant “tools” are the result of either technology
“push” or “pull”. Technology push is when useful ideas are generated through research, own
or external. Pull is when new ideas applied in project work seem applicable elsewhere. Some
assessment is made as to what seems most promising, with a view to the balance of urgency
versus time required to develop or document the idea.

When ideas are generated from technology push, an attempt is made to evaluate the
usefulness in a real project, which may include internal projects in some cases. If deemed
useful, the idea is documented and rolled out in the organization, usually following a pre-
defined procedure similar to “stage gate” processes used in product development.

With regard to the papers in this thesis, some of the ideas in Paper A have been used in real
project work. Specifically, geometrical properties have been used in some projects, and
Option properties are used in almost every project. Paper B is something that could
conceivably be used in the prioritization of research topics — e.g., a formalized way of
prioritizing potential topics — but this is often done in an organic fashion. Paper C is related to
novel products at a very early point in the development, and this has been a very rare type of
client engagement, as the author’s experience goes, so MFD has never been used with DSM
in the conceptual manner outlined in the paper. Paper D is related to a larger, ongoing
research topic, that of clustering with respect to MFD and DSM simultaneously. The author
hopes to test the new algorithm in one or two real client projects during 2012.
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6 CONCLUSION AND FUTURE RESEARCH

This chapter presents conclusions and
suggests possible future work

6.1 Introduction

As stated in section 1.7, the research question is whether we can improve the methods used
for generating modular product architecture. In this section, we will offer an overall
conclusion, as well as discuss possible future research.

6.2 Conclusions

This thesis deals with four specific research topics that all support the question whether
existing methods can be improved in terms of their usefulness.

In general, the answer has to be stated as yes. In chapter 4 we looked at the answers to the
research questions, and in chapter 5 we discussed the contribution to research in engineering
design. Andersson (Andersson 2003) claims the complete rationale for a product cannot be
elicited or represented, as it is not a finite task. If that is the case, it seems we cannot expect
there to be a “perfect solution”, meaning neither the end goal (the design) or the process of
getting there (the approach we take to design or in a narrower sense, the approach to
modularity). Figure 4 positions the research topics in the present thesis in an early phase of
product development, so we might ask to what extent we have improved the tools in this
phase.

By focusing on method selection, application of existing methods to novel product types,
selection of product properties, and finally supporting algorithms for clustering, we have
shown how different stages of the Concept Generation phase can be improved through the
use of new techniques or application of existing techniques in a new way.

Method selection is often completely overlooked. It is not easy to give clear-cut guidelines.
To reengineer an existing product, in a situation with no or very few new customer
requirements and no change of company strategy, DSM might be sufficient. It does a good
job of describing component interactions, and takes an “engineering centric” view of the
product. If the product is new, or there are many new customer requirements and/or a new
company strategy, then MFD is probably a better choice. Because it uses three interlinked
matrices, capable of handling at least four types of information (requirements, properties,
technical solutions, and strategy) MFD is more flexible than DSM. The task of selecting a
method must also include considerations such as time required to learn the tool, whether
software is available to support data analysis, whether the task of writing specifications is
supported etc. These are examples of subjective criteria we may wish to include in the
selection itself, and we have seen that integrating such criteria is possible.

Whether approaches to modularity, such as DSM or MFD, really get used in development of
novel product types is hard to say, and the present thesis does not answer that question. To
answer such a question would mean interviewing James Dyson, for example, to find out
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whether any particular structured method was used in the development of the famous
cyclonic vacuum cleaner (Dyson 1986). The answer is probably no. In the case of a cyclonic
separation system, Dyson’s innovation essentially replaces the filter, e.g., essentially only one
subsystem in the product. The situation may be different in the case of the Toyota Prius,
where the entire drive train was replaced with a parallel hybrid. This is a much more complex
system and a much bigger change, and it would be more reasonable to assume some
structured process was used. However, we do not have easy access to the core development
team at Toyota, and they do not openly talk about their work, which is part of Toyota’s core
Intellectual Property.

In the author’s experience, both MFD and DSM suffer from similar problems in the
usefulness of the output typically obtained on the first iteration. In many cases, the clustering
algorithms will yield useful output for some of the technical solutions or components, but not
all. This is caused by lack of relevant information, not by a deficiency in the algorithms
themselves (which are generic, and can operate on very simple data or very complex data). In
project work, whether MFD or DSM is used, teams typically create new data to address
deficiencies in the previous iteration of output, and then re-run the algorithms to see if the
new output is better than the previous output. After a few iterations, conclusions are drawn
from the data and the output may be summarized in specifications, tables, matrices etc, as
required. Through a more conscious use of properties that describe product geometry and
required component interactions, the number of iterations required can be reduced, and a
more useful output can be obtained on the first attempt. For existing products, both geometry
and interaction are quite well understood, and this presents no significant obstacle during the
data gathering phase. For new products, it will be more challenging, as there are fewer
knowns and more unknowns, both geometrical and functional.

As presented in Figure 18, the author’s real interest in DSM clustering was triggered by a
research topic related to the “marriage” of MFD and DSM, which in turn builds on the
structured comparison that identified these two approaches as being most complementary. In
project work, the team often sits around and watches while the “clustering expert” runs the
software that generates output, based on the matrices of data collectively populated by the
team. It would be completely unrealistic to wait a full day for the output! Recent research in
the field of product architecture identifies Genetic Algorithms as being the most promising
path for flexible clustering algorithms (Simpson et al. 2011). One aspect which seems
completely ignored is many such algorithms built on GA take on the order of a full day to
complete, given a problem with roughly 60 components. Execution time definitely must be
an evaluation criterion, and although algorithms that use a full day to complete may be
interesting research prototypes, researchers should spend time trying to improve execution
speeds to make them useful.

6.2 Future research

6.2.1 Observe development of novel product types

To the extent that we may gain access to projects that develop new product types, it would be
interesting to evaluate the usage of MFD, DSM, or some other structured approach to
modularity to determine their usefulness in this context. Such projects are often more or less
secret, which is the real obstacle to such research.
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6.2.2 Survey-based evaluation

The evaluation of five approaches to modularity could be repeated with a team, instead of as
a one-person effort. Both the generation of experience-based criteria and the pairwise
comparison would benefit from such a setup. It may also be possible to analyze the “Criteria-
DSM” using IGTA-plus instead of HCA. The advantage would be the former dictates the
number of modules, where the latter does not.

6.2.3 Automatic clustering of FS-DSM

Paper B discusses a hybrid method called FS-DSM (Blackenfelt 2000). The clustering
algorithm presented is expressed as a three-step heuristic which builds on work by
(Newcomb, Bras & Rosen 1996; Coulter, Mclntosh, Bras & Rosen 1998; Gu & Sosale 1999;
Kusiak & Chow 1987). It is conceivable that someone could transform the proposed three-
step heuristic into a computerized algorithm, but doing so would be a significant
programming task. During a brief phone interview in 2011 about the algorithm, the author
asked Dr. Blackenfelt whether he ever devised a program to perform the three-step clustering.
Dr. Blackenfelt stated that to the best of his memory, all the clustering was performed by
hand, by rearranging rows and columns in an Excel spreadsheet. In the end, we have to
conclude that an algorithm is surely possible, but that devising it seems far from trivial.
Genetic Algorithms (GAs) allow for more flexibility in terms of their objective functions
(Simpson et al. 2011). Therefore, a GA may be more suited than IGTA as a basis.
Blackenfelt’s heuristics may be expressed as objective functions. In each round of clustering,
the input is taken to be the output of the previous stage. The input to the first stage is the
“raw” FS-DSM. In each stage, the objective function is changed to reflect the heuristics in
Error! Reference source not found..

6.2.4 New Convergence Properties

It is interesting to ask whether Convergence Properties fit into some theoretical framework,
like the one by (Hubka & Eder 1996). Three related research topics are discussed below.

First, it may be interesting to look at Functions as the intermediary between Customer
Requirements and Technical Solutions. This has been explored by many researchers.
(Sellgren and Andersson 2005) use functions in their eISM model. (Suh 1990) uses
Functional Requirements as the starting point and then relates those directly to Design
Parameters. It may be possible to use Functions and Properties in the same matrix. Clustering
is, after all, a statistical process.

Second, we may use the QFD scoring to aid in the clustering. The way to do this would be to
create a new matrix calculated as QFD times transpose of DPM, possibly normalized to have
values between zero and nine, and then include that, together with DPM/MIM, in the
clustering. This would be equivalent to simply adding the Customer Requirements, as some
kind of super-functions, and allowing that to influence the Clustering. This matrix would
have the same number of columns as there are Customer Requirements in the QFD, and the
same number of rows as there are Technical Solutions in the DPM. The most attractive
feature of this idea is this scoring is “free” — the scoring has already been done once, in the
QFD, and the matrix product can be machine-generated, essentially providing more
information at no extra cost (in terms of labor), and potentially improving the output in the
process.

Third, the overall nature of the target segments may be included in the QFD and DPM. This
was done in a recent project, in 2011, where the concept became known as “Red/Green/Blue”
properties. The product was an upright corded vacuum cleaner for the US market. It was
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determined that users fell into three main segments. They were assigned names and a color
code. The team made an attempt to determine which of the segments were mainly supported
by each of the Customer Requirements. This information was then added as a *“super-
property” and allowed to influence the clustering. Here is how that worked, using an
example. One of the segments was called “Time Challenged”. The color code assigned in this
case was Green. A Customer Requirement that was ranked as very important in this segment
was called “Easy to wind cord”. There was an option property called “Presence of automatic
cord winder”, and of course a Technical Solution called “Cord winder”. What the team ended
up doing was to introduce “Green” as a super-property, and then put a strong scores on “Easy
to wind cord” in the QFD and “Cord winder” in the DPM. The same was done for the other
two “colors”. The way this influenced the clustering was to drive the modules toward three
large “super groups” of features that each respectively supports a group of features. Thus, to
the extent that it is possible, Cord winder would get clustered with other features that support
“Time Challenged” customers’ needs.

6.2.5 Modularization of the electronic inverter

The evaluation of MFD and DSM applied to a novel machine type, the hybrid Forwarder,
identified the electronic inverter as being in need of a more accurate Technical Solution
breakdown, which potentially has to support several operating modes. The forthcoming
algorithm called R-IGTA could possibly be applied to the system, using the same DPM and
DSM, but applying a new algorithm which tries to integrate both matrices into one single
output, thereby addressing the second issue described in the previous section. To be useful,
however, this work would require access to someone with a detailed knowledge of inverter
technology, which is hard to find.

6.2.6 Further computational improvements to IGTA-plus

IGTA-plus could be improved even further in at least two ways. First, the iterative loops used
to calculate ClusterBid could probably be written as matrix operations. Second, a much better
initial configuration could be calculated using a non-stochastic algorithm such as the one by
(Li 2011), which is extremely fast — and available freely as Matlab code (Li 2010). One way
of obtaining a better initial configuration would be to multiply the DPM by its own transpose,
normalize the values thus obtained, add it to the DSM, and then apply the algorithm by
Simon Li (Li 2011; Li 2010) to the resulting matrix.

6.2.7 Heuristics to improve IGTA

It may be possible to devise heuristics that make IGTA-plus more efficient, too. Automatic
generation of heuristics is explored in (Prieditis 1993). However, the type of heuristics thus
generated seems mainly applicable to planning problems, e.g., the objective is to find a
sequence of steps that transform the initial configuration to a desired and known end-state. In
MFD or DSM type clustering, the end state is not known, but it may still be possible to devise
heuristics that make the search faster, such as moving components that have a large impact on
TotalCost more frequently than components with a low impact.

6.2.8 GA-core for IGTA

The two objective functions used in IGTA-plus, TotalCost and ClusterBid, could be used in a
Genetic Algorithm. It would be an additional challenge to write a GA that executes as quickly
as IGTA-plus.

6.2.9 Expand the problem domain for IGTA

The scope of IGTA-plus could be extended to encompass MFD, to strike a balance between
the module requirements in the DSM and the DPM/MIM. This is explored in a forthcoming
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paper by the author, co-authored with Professor Katja Ho6lttad-Otto (Assistant Professor of
Mechanical Engineering, University of Massachusetts Dartmouth). The algorithm is
tentatively named R-IGTA, where the R represents Reangularity (Suh 1990).

45



7. REFERENCES

Akao, Y., Mizuno, S., 1994, The Customer-Driven Approach to Quality Planning and
Development, Asian Productivity Organization, Tokyo.

Alexander, C., 1964, Notes on the synthesis of form, Harvard Press, Boston, ISBN 978-
0674627512 .

Andersson, F., 2003, The Dynamics of Requirements and Product Concept Management,
Dissertation, Chalmers University of Technology, Gothenburg, Sweden. ISBN 91-7291-383-
5.

Blackenfelt, M., 2000, Modularisation by relational matrices - a method for the consideration
of strategic and functional aspects, Proceedings of the 5th WDK Workshop on Product
Structuring, Tampere, Finland, February 7-8.

Borjesson, F., 2009, Improved Output in Modular Function Deployment Using Heuristics,
Proc. of the 17th International Conference on Engineering Design (ICED ’09), Vol. 4, ISBN
9-781904-670087, Stanford, 2009, pp 1-12.

Borjesson, F., 2010, A Systematic Qualitative Comparison of Five Approaches to
Modularity, 11th International Design Conference, Design 2010, Dubrovnik, Croatia, May
17-20.

Browning, T. R., 2001, Applying the Design Structure Matrix to System Decomposition and
Integration Problems: A Review and New Directions, IEEE Transactions on Engineering
Management, 48(3):292-306, DOI 10.1109/17.946528, ISSN 0018-9391.

Chiriac, N., Holtta-Otto, K., Suh. E.S., Lysy, D., 2011, Level of Modularity and Different
Levels of System Granularity, ASME Journal of Mechanical Design (accepted for
publication).

Clarkson, J. P., Simons, C., Eckert, C., 2004, Predicting Change Propagation in Complex
Design, Journal of Mechanical Design, 126(5):788-798, DOI 10.1115/1.1765117, ISSN
1050-0472 (printed), 1528-9001 (online).

Dyson, J., 1986, Vacuum cleaning appliance, Patent number 4593429, United States Patent
Office.

Eppinger, S. D., Whitney, D. E., Smith, R. P., Gebala, D. A., 1994, A model-based method
for organizing tasks in product development, Res. Eng. Design 6:1-13, DOI
10.1007/BF01588087, ISSN 0934-9839.

Ericsson, A., Erixon, G., 1999, Controlling Design Variants: Modular Product Platforms,
ASME Press, The American Society of Mechanical Engineers, New York, NY. ISBN 0-
87263-514-7.

Erixon, G., 1998, Modular Function Deployment - A method for Product Modularisation,
PhD thesis, The Royal Institute of Technology, Stockholm.

Everitt, B. S., Landau, S., Leese, M., Stahl, D., 2011, Cluster Analysis, 5th edition, Wiley,
West Sussex, ISBN 978-0470749913.

Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., Clarkson, P. J., 2009, Change
propagation analysis in complex technical systems, Journal of Mechanical Design 131(8),
081001, DOI 10.1115/1.3149847, ISSN 1050-0472 (print), 1528-9001 (online).

46



Gutierrez Fernandez, C. 1., 1998, Integration Analysis of Product Architecture to Support
Effective Team Co-Location, Master’s Thesis at Massachusetts Institute of Technology,
Department of Mechanichal Engineering.

Hauser, J. R., Clausing, D., 1988, The House of Quality, The Harvard Business Review,
May-June, No. 3, pp. 63-73.

Helmer, R, Yassine, A., Meier, C., 2010, Systematic module and interface definition using
component design structure matrix, J. Eng. Des. 21(6):647-675, DOI
10.1080/09544820802563226, ISSN 0954-4828 print / 1466-1837 online.

Holtta, K, Tang, V., Seering, W. P., 2003, Modularizing product architectures using
dendrograms, Proceedings of International Conference on Engineering Design (ICED'03),
August 19-21, Stockholm, Sweden.

Holtta, K., 2005, Modular Product Platform Design, Doctoral Dissertation, Helsinki
University of Technology, Department of Mechanical Engineering, Machine Design,
Helsinki, Finland. ISBN 951-22-7766-2.

Holtta, K., Otto, K. N., 2005, Incorporating design effort complexity measures in product
architectural design and assessment, Design Studies 26(5):463-485, DOI
10.1016/j.destud.2004.10.001, ISSN 0142-694X.

Holtta-Otto, K., Tang, V., Kevin, O., 2008, Analyzing module commonality for platform
design using dendrograms, Res. Eng. Design 19:127-141, DOI 10.1007/s00163-008-0044-3,
ISSN 0934-9839.

Idicula, J., 1995, Planning for Concurrent Engineering, Gintic Institute Research Report,
Singapore.

Lehtonen, T., 2007, Designing Modular Product Architecture in the New Product
Development, Doctoral Dissertation, Tampere University of Technology, Tampere, Finland,
Publication 713. ISBN 978-952-15-1898-0, ISSN 1459-2045.

Li, S., 2010, Matlab program code for two-mode clustering, downloaded Feb 24, 2012,
available at http://users.encs.concordia.ca/~lisimon/software.html.

Li, S., 2011, A matrix-based clustering approach for the decomposition of design problems,
Res. Eng. Design 22:263-278, DOI 10.1007/s00163-011-0111-z, ISSN 0934-9839.

Martin, M. V., Ishii, K., 2002, Design for variety: developing standardized and modularized
product platform architectures, Res. Eng. Design 13:213-235, DOI 10.1007/s00163-002-
0020-2, ISSN 0934-98309.

Mathworks, The, Inc., 2010, Matlab R2010a, http://www.mathworks.com, .

Nilsson, P., Erixon, G., 1998, The Chart of Modular Function Deployment, Proceedings of
4th Workshop on Product Structuring, Delft University of Technology, Delft, The
Netherlands.

Pimmler, T., Eppinger, S., 1994, Integration Analysis of Product Decomposition,
Minneapolis: ASME Design Engineering Technical Conferences-6th International
Conference on Design .

Russell, S., Norvig, P., 2002, Artificial Intelligence: A Modern Approach (2nd Edition),
Prentice Hall, Englewood Cliffs, ISBN 978-0137903955.

47



Sellgren, U., Andersson, S., 2005, The Concept of Functional Surfaces as Carriers of
Interactive Properties, Proceedings of International Conference on Engineering Design
(ICED'05), August 15-18, Melbourne, Australia.

Sharman, D. M., 2002, Valuing Architecture For Strategic Purposes, Master's Thesis at
Massachusetts Institute of Technology, System Design & Management Program.

Sharman, D. M., Yassine, A. A., 2007, Architectural VValuation using the Design Structure
Matrix and Real Options Theory, Concurrent Engineering 15(2):157-173, DOI
10.1177/1063293X07079320, ISSN 1063-293X (print), 1531-2003 (online).

Simpson, T. W., Maier, J. R. A., Mistree, F., 2001, Product Platform Design: Method and
Application, Res. Eng. Design 13:2-22, DOI 10.1007/s001630100002, ISSN 0934-98309.

Simpson, T. W., Bobuk, A., Slingerland, L. A., Brennan, S., Logan, D., Reichard, K., 2011,
From user requirements to commonality specifications: an integrated approach to product
family design, Res. Eng. Design (online first, 19 August 2011), DOI 10.1007/s00163-011-
0119-4, ISSN 0934-98309.

Stake, R. B., 2000A, Using cluster analysis to support the generation of modular concepts in
the MFD-method, International CIRP Manufacturing Systems Seminar, June 5-7, Stockholm,
Sweden.

Steward, D. T, 1981, The Design Structure System: A Method for Managing the Design of
Complex Systems, IEEE Transactions on Engineering Management, 28(3):71-74, ISSN
0018-9391.

Stone, R. B., Wood, K. L., Crawford, R. H., 2000, A heuristic method for identifying
modules in product architectures, Des. Studies, 21(1):5-31, DOI 10.1016/S0142-
694X(99)00003-4, ISSN 0142-694X.

Suh, N. P., 1990, The Principles of Design, Oxford University Press, Inc., New York, NY
10016.

Suh, E. S., Kott, G., 2010, Reconfigurable Parallel Printing System Design for Field
Performance and Service Improvement, Journal of Mechanical Design, 132(3), 034505, DOI
10.1115/1.4000961, ISSN 1050-0472 (print), 1528-9001 (online).

Thebeau, R. E., 2001A, Knowledge Management of System Interfaces and Interactions for
Product Development Process, Master’s Thesis at Massachusetts Institute of Technology,
System Design & Management Program.

Thebeau, R. E., 2001B, Matlab program code, available at http://www.dsmweb.org/.

Ulrich, K., 1995, The role of product architecture in the manufacturing firm, Research Policy
24(3):419-440, DOI 10.1016/0048-7333(94)00775-3, ISSN 0048-7333.

Whitfield, R. I., Smith, J. S., Duffy, A. H. B., 2002, Identifying Component Modules,
Proceedings of the 7th international conference on artificial intelligence in design AID'02, pp.
571-592.

Wyatt, D., Jarrett, J. P., Clarkson, P. J., 2012, Supporting product architecture design using
computational design synthesis with network structure constraints, Res. Eng. Design 23:17-
52, DOI 10.1007/s00163-011-0112-y, ISSN 0934-9839.

Wynn, D. C., Nair, S. M., Clarkson, P. J., 2009, The P3 platform: an approach and software
system for developing diagrammatic model-based methods in design research. In: Norell
Bergendahl, M., Grimheden, M., Leifer, L., Skogstad, P., Lindemann, U. (eds) Proceedings

48



of the international conference on engineering design (ICED ’09), Palo Alto, California,
USA, pp. 559-570.

Yu, T.-L., Yassine, A. A, Goldberg, D. E., 2007, An information theoretic method for
developing modular architectures using genetic algorithms, Res. Eng. Design 18:91-109, DOI
10.1007/s00163-007-0030-1, ISSN 0934-9839.

Zamirowski, E. J., Otto, K. N., 1999, Identifying Product Portfolio Architecture Modularity
Using Function and Variety Heuristics, Proceedings of the 1999 ASME Design Engineering
Technical Conferences (DETC99/DTM-8760), Las Vegas.

49



50



INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED’09
24-27 AUGUST 2009, STANFORD UNIVERSITY, STANFORD, CA, USA

IMPROVED OUTPUT IN MODULAR FUNCTION
DEPLOYMENT USING HEURISTICS

Fredrik Borjesson
Royal Institute of Technology (KTH), Department of Machine Design,
Stockholm, Sweden

ABSTRACT

In Modular Function Deployment, technical solutions are grouped into modules according to
the product properties and the strategic intentions of the company. Statistical methods such as
hierarchical clustering are useful in the formation of potential modules, but a significant
amount of manual adjustment and application of engineering common sense is generally
necessary. We propose a method for promoting better output from the clustering algorithm
used in the conceptual module generation phase by adding Convergence Properties, a
collective reference to data identified as option properties, geometrical information, flow
heuristics, and module driver compatibility. The method was tested in a case study based on a
cordless handheld vacuum cleaner.

Keywords: Conceptual product development, modular products, Modular Function

Deployment, module drivers, clustering algorithm, hierarchical clustering, statistical
approach, heuristic methods
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0] ABBREVIATIONS
Table 1 is a summary of the abbreviations used, with a brief description.

Table 1. Abbreviations, existing and proposed

Data

' Meaning

Customer Requirement. Expl

need. DETWEEN LK ana Fr.
Product Property. Measurable and controllable DPM Design Property Matrix. Defines the relation
translation of CR. between PP and TS.
Technical Solution. Physical carrier of a required MIM Module Indication Matrix. Defines the relation
function. between TS and MD.
Module Driver. Describes the company-specific PMM Product Management Map. Interlinked
strategy. - ’ 1, and MIM.
Data
Abbre )
Lo Meaning

viation

opP Option Property. Presence of specific technical QED Extended 1e relation between CR
features. and OP.

GP Geometrical Property. Representation of key CcPM Converge atrix. Defines relation
regions in product. between |

HP Heuristic Property. Application of branching- ePMM Extended I PMM plus QED and
combining, conversion-transmission, and CPM.
dominant flow heuristics.

DC Driver Compatibility. MD compatibility to
guarantee strategically compatible clusters.

cpP Convergence Properties. Collective reference to
OP, GP, HP, and DC.

1 INTRODUCTION

Modularity methods are concerned with the translation of customer requirements and
company strategy into a product architecture that offers reduced time-to-market (by allowing
flexible configurations), lower unique part number count and often material cost reduction
(through reduction of suppliers and improved purchasing leverage). According to Holtta-Otto
[1], there are three main approaches to modularity.

Heuristics refer to rules of thumb that very often give good results. In [1], two main
categories are investigated: modules dictated by the patterns of flow (matter, energy, and
information) between the functional blocks, and patterns of commonality/variety in a family
of products. These methods are highly repeatable [1] but do not consider strategic objectives

[2].

DSM [3] may be used to determine the ideal sequence of development tasks in a project, but
it can also be used to define modules in a product architecture [1]. The best sequence is one
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that minimizes the number of coupled tasks. DSM does not consider strategic objectives or
even functional requirements of the product.

MFD [4] is a five-step method for translating customer requirements into a modular
architecture, while considering the strategic objectives (described using twelve predefined
Module Drivers). Cross-functional teams are used. Project data is captured in three core
matrices. MFD allows for a high level of concurrency in the conceptual phase, before
modules are defined. In this paper, a module is defined as a functional block with
standardized interfaces, selected for company-specific reasons [4].

Module generation is based on grouping Technical Solutions into modules with related
functions and similar strategic intent. In real projects, this involves sorting a large amount of
data, and for practical reasons this must be done using statistical methods. The output is often
shown as a Dendrogram, a hierarchical representation of the level of similarity between the
Technical Solutions. Very often, however, the first Dendrogram just does not seem fully to
make sense.

This paper is part of a larger research topic, with the goal of determining how we can
improve MFD to yield better output. A better understanding of the product properties that
drive product architecture decisions is believed to be at the heart of this question. This paper
deals with a more narrowly defined topic: the introduction of so called Convergence
Properties to yield more useful conceptual module output from the statistical algorithms.

2 BRIEF MFD THEORY

Without a solid understanding of Customer Requirements, any product architecture effort
risks becoming an engineering-driven exercise without useful market application. QFD [5] is
a powerful tool for describing Customer Requirements in terms of Product Properties.

Shortly after MFD [4] was introduced, it was improved by the addition of the Design
Property Matrix (DPM) [6], linking the Product Properties in the QFD with the Technical
Solutions of the Module Indication Matrix (MIM). This version of MFD is the reference for
comparisons with proposed improvements.

Module Drivers are used to describe the strategic intent of an architecture, and is a key
feature of the MFD approach. The Drivers are summarized in Table 2 below.
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Table 2. Module Drivers used in MFD [4]

Driver Technical consideration
Common Unit Allow solutions to be used in several variants
Carry Over Allow solutions to be used in future product generations
Technical Create a range of modules with regard to specification level
Specification
Styling Create a range of modules with regard to styling variation
Planned Design Allow new design to be incorporated
Changes
Technology Push Allow new technology to be incorporated
Process / Organization Protect scarce resources in development or production
Strategic Supplier Outsource development and manufacturing to external partner
Available
Separate Testability Allow module level testing before final assembly
Service / Maintenance Allow easy replacement or service of parts
Upgrading Allow customer to upgrade performance after purchase
Recycling Extract dangerous or valuable materials at time of scrapping

Module Drivers support basic company strategy. Drivers that support the same strategy are
said to be compatible [4]. A module should consist of technical solutions with compatible
Module Drivers only. Empirical research [7] indicates the interpretation of driver
compatibility varies somewhat from one company to another. However, Figure 1 provides a
useful guideline. Conflicting driver combinations are indicated by a minus sign while
mutually supporting drivers get a plus sign. A question mark means potentially there is
interaction, but the nature must be determined on a case-by-case basis.

'y Over

nology Push
ined Design Change

nical Specification

ing

imon Unit
nisation

bility
lier Availab

/ice / Maintenance §>/
rading

ycling

Figure 1. Module Driver compatibility according to Erixon [4]

Some of the strengths of MFD are:
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o Allows high degree of parallelism in the conceptual phase of the work

e Use of matrices for all project data implies automated statistical approaches to module
generation may be used, which is particularly useful in large projects

e Incorporates customer driven, engineering driven, and strategic considerations

Some of the weaknesses of MFD are:

e Results depend on the experience and technical expertise of the team conducting the
work [1]

e Quality is highly dependent on good property definitions and consistent scoring,
which typically requires experience

e For certain product types, there is not always a sufficient number of customer-driven
product properties to generates modules on the right level of resolution

3 CONVERGENCE PROPERTIES

The reason why hierarchical clustering often does not converge on a useful first output is
problems with the data, not the algorithm. When engineers apply their common sense to
determine what constitutes a useful output, they rely on additional information which
typically is not part of the data supplied to the algorithm.

Figure 2. Convergence Properties are a response to common practical issues in MFD

We aim to promote better output in the module-clustering phase of MFD by considering
several practical concerns and including data pertaining to the four areas named in Figure 2.
The concept of Convergence Properties is introduced to formalize some of the common
sense applied in practical applications of MFD. In this paper, we will look at four types of
Convergence Properties.

Option properties determine whether a certain product option is enabled in the final product
configuration. These are special Boolean properties, e.g., take yes/no values only. Traditional
Product Properties used in MFD are solution-free. Option properties are radically different in
that they normally stipulate a specific solution.

Geometrical properties reflect additional knowledge about the probable physical
configuration of the final product. We may imagine dividing the product into pre-defined
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regions, and then labeling each technical solution by whether it would likely be located in a
certain region.

Heuristic Properties are based on function structure. Two sets of heuristics are presented in
[8] and [9]. The former are based on flow of matter, energy, and information, whereas the
latter are based on function and variety (Causally-linked functions, Similarity/repetition, and
Commonality/variety). We will be using the flow heuristics in this work, but not the function
and variety heuristics, since the latter overlap more strongly with what may be achieved using
the normal Product Properties and Module Drivers of traditional MFD. Flow heuristics
describe how functions interact in the product, which complements the performance-based
properties of MFD. Each of the three flow heuristics are presented below. The word Flow
refers to a flow of matter, energy, or information.

Dominant flow : If the same Flow goes through a sequence of functions, they should form a
module.

Figure 3. Dominant flow heuristic

In product where there is a strong dominant Flow, this Flow typically determines the system
performance. Almost always, the technical solutions have to be in a certain sequence. If the
performance level has to be changed, all the technical solutions involved in that flow
typically have to be re-engineered in harmony. A jet engine might be an intuitive example:
stepping up the thrust involves changing inlet, fan blades, compressor, exhaust geometry etc.

Conversion-transmission : Functions that convert one type of Flow into another should form
modules. If the conversion is followed by transmission, that should be part of the same
module.

Figure 4. Conversion-transmission heuristic

This heuristic is based on the idea that Flow transformation typically happens in a technical
solution that has some critical property related to the conversion itself, and this property tends
to be very local to that technical solution. Transmission is included because it is convenient to
deliver the output to where it is needed. A good example would be a DC-motor with outgoing
shaft.
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Branching-combining : If a Flow splits up into parallel function chains, the subfunctions that
make up those chains should form modules. This also applies to combining flows.

Figure 5. Branching-combining heuristic

Branches dealing with the same Flow often perform independent tasks and often have to be
flexibly configurable. To enable that, it is useful to use the same interface in each branch.
This results in a bus architecture, as in a PC where boards can be added flexibly.

Driver Compatibility may be used to define groups of Module Drivers in such a way that
drivers within a group support the same strategy. Very often in MFD project work, the DPM
is much larger than the MIM. Since the clustering algorithm is essentially statistical, the
strategic intent reflected in the MIM is drowned out by the performance requirements
described in the DPM. By supplying additional information about compatibility, we can
decrease the risk that Technical Solutions with incompatible drivers get allocated to the same
module.

Extended PMM accommodates Convergence Properties

One of the key outputs of MFD is the Product Management Map (PMM), which in turn
consists of three matrices, Quality Function Deployment, Design Property Matrix, and
Module Indication Matrix. A traditional PMM is shown on the left in Figure 6. An Extended
PMM (ePMM) is shown on the right, and it represents a potential solution to the problem of
incorporating Convergence Properties into MFD in a matrix format to allow usage of
statistical tools for module generation. The ePMM has two additional matrices: the
Convergence Property Matrix (CPM) and the Extended QFD (abbreviated QED to
underscore the analogy to QFD). The QED uses Option Properties that take yes/no values
only. The remaining Convergence Properties are not derived from customer needs, so that
part of QED is left blank.
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Figure 6. PMM and the Extended PMM (ePMM)

4 CASE STUDY - CORDLESS HANDHELD VACUUM

CLEANER

Background

The case study presented here is based on a cordless handheld vacuum cleaner, which has
been used successfully in a basic five day MFD-training for hundreds of students. This case
study is based on learnings from that training as well as desk research. One key element of

the training is the scoring of the DPM and the subsequent application of clustering on that
data, which is shown schematically in Figure 7.

Figure 7. Schematic of the transformation of DPM into a Dendrogram
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Figure 8 shows how a team might interpret the Dendrogram in Figure 7. Potential modules
are indicated with boxes.

T

Figure 8. Possible interpretation of the dendrogram in Figure 7

Project experience has shown that dendrograms rarely can be used as is. In the example
above, there are several irregularities. This raises the suspicion that our example DPM
contains incorrect scoring or even poorly defined properties.
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Why dendrograms must be interpreted

Table 3 shows why dendrograms often have to be interpreted, and not used as is.

Table 3. Examples of reasons why dendrograms need to be interpreted

Reason

Example

Geometrical information about
the product is not considered

All product styling elements, regardless of physical locat
become one single module

Critical properties are
overlooked

Two different fuel sources, electricity and gas, are treated
same. resulting in impossible dual-fuel modules

Engineering properties cloud the
DPM matrix

Too much weight is placed on surface and material proper
resulting in a skewed QFD and not enough focus on interl
driving properties

Required sequence of certain
technical solutions is ignored

Nozzle and exhaust create a module, ignoring the need fo
impeller to drive the flow

Modules are not strategy clean

Size of DPM overshadows MIM completely, resulting it
clustering that is almost completely DPM-based

Important requirements are not
translated into useful properties

“Easy to clean” is translated into a statement such as
“cleanability”, which on the surface may look like a propert
in reality is nothing but a reworded requirement

Key concept selections are
treated as any other property

The method used to release a dust container from the hand
unit is captured by a property-like statements such as “Num
steps to remove container”

Tremendous energy is expended
on engineering properties

Color, finish, and material are described in tremendous de
when normally surface properties do not drive an interface
architecture

System properties are never
disaggregated

“Suction power™ is introduced, resulting in modules that
simply much too large, vaguely corresponding to subsyst

To show how the proposed four types of Convergence Properties might help module creation
in the handheld vacuum cleaner example, we will now look at an example of each one.

Option Properties

When we devise a new architecture for a family of cordless vacuum cleaners, we may decide
to support an optional charge in progress indicator, as shown in Figure 9. We may capture
this by creating an Option Property called “Presence of Charge Feedback”.
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Figure 9. Charge feedback is either present or it is not. Photo manipulated by author.
Geometrical Properties

Without knowledge of product geometry, hierarchical clustering could propose a module
composed of suction nozzle and air exhaust, for example. They both relate to pressure drop
and are both characterized by an important cross section. Such a module would ignore the
normal physical configuration of the product. In terms of geometry, we know the nozzle is
typically in the front, and the exhaust typically in the back. Figure 10 shows three regions:
Front, Rear, and Off unit.

Figure 10. Geometrical properties describe the region where a TS belongs

Heuristic Properties

The dominant flow heuristic is particularly suitable in a handheld vacuum cleaner, where
there are flows of air and energy. This heuristic predicts that any technical solution involved
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in the main airflow should be part of one and the same module. We create a Heuristic
Property called Dominant Air Flow, and tag all the involved technical solutions in the CPM.
This holds them together in the clustering.

Driver Compatibility

In this example, two groups were introduced, Variance and Planned Change, defined as
follows

e Variance: enforce distinction between Common Unit and either Styling or Different
Specification

e Planned Change: enforce distinction between Carry-over and either Planned Design
Change or Technical Evolution

If a Technical Solution had a MIM score on Styling or Different Specification, it would also
receive a score on Variance. Similarly, Planned Design Change or Technical Evolution would
give it a score on Planned Change.

Putting CPM to the test

We compared a traditional PMM with an ePMM, and examined the Dendrogram output. The
Product Properties and Convergence Properties that were used are summarized in Table 4.
The Module Drivers were used as well and they can be found in Table 2.
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Table 4. Variables used in analysis

ations

i filter

Prodi
Prope

ntrol
it

Clustering was applied to three combinations of data as shown in Table 5. More tickmarks
means more information was used. Full CPM uses all the Convergence Properties. No CPM
uses none, which corresponds to clustering on a normal PMM. A hybrid scenario labeled
Partial CPM was introduced to show how Option Properties alone also improve Dendrogram
output.
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Table 5. Clustering analysis was applied to three sets of data

Sce

Full C
Partie

No CF

The appearance of flat subtrees in Partial CPM and No CPM signifies lack of information,
and this can clearly be seen in Figure 11. It is not necessary to read the Technical Solutions to
see the subtrees.

/Flat
subtree

Flat
“subtree

 Flat
subtree

Figure 11. Dendrogram output from the three test scenarios in Table 5

Large flat subtrees could be module clusters, but large flat subtrees of unrelated technical
solutions are caused by lack of relevant scoring. The Dendrogram labeled Full CPM does not
show this symptom. The technical solutions of each flat subtree are listed in Table 6. The
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reader will be able to confirm these technical solutions indeed are not related and do not
represent useful modules.

Table 6. Unrelated technical solutions in large flat subtrees

Flat subtree 1
Cooling air stream, Air flow at nozzle opening, Thumb pad, Slider, Battery casing, Pivoting device, Hinge
mechanism, Dust vanes, Handle, Primary filter holder, Noise shield, Charge controller IC

Flat subtree 2
LED on controller output, LED on rectifier, Vortex device, Battery temp probe, Dust wheel, Nozzle storage,
Attachment storage, Coupling, Dust handle

Flat subtree 3

Hook, plus all the technical solutions in Flat subtree 1 from scenario Partial CPM

Observations from using ePMM

e The dendrograms obtained from two of the scenarios feature large flat subtrees of
unrelated technical solutions, indicating these clusters are the result of insufficient
information.

e The result obtained in scenario Full CPM is drastically better than from No CPM. The
former corresponds to an ePMM and the latter a normal PMM without any
Convergence Properties.

e With a couple of minor exceptions, the clusters made intuitive sense. This result was
far better than from a typical first output of a normal PMM.

e Both the Dominant flow and Conversion-transmission heuristics were helpful, but in
this particular product, the Branching-combining heuristic was not.
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5 DISCUSSION
Convergence Properties in the context of other research

The proposed method presented in this paper is an attempt to improve one existing method
for generation of modular architectures by including useful features of other methods while
preserving the strengths of the original method upon which it is built. This approach has been
used by other researchers, such as:

o Blackenfelt [2] who proposes improvements to DSM by incorporating both functional
and strategic considerations

o Sellgren and Andersson [10] who incorporate interactive functions into the DSM,
using a format similar to the PMM, but where the MIM is replaced by a DSM and
functions take the role of properties

Conclusions

Module output varies greatly with the quality of the information provided to the clustering
algorithm. The case study shows how Convergence Properties may be added to MFD in such
a way that a matrix-based representation may still be used, which keeps one very important
original feature intact: the possibility to apply MFD in very large projects where, for practical
reasons, manual module generation simply is not possible. We have seen how the addition of
four proposed new property types may raise the quality of the first output. The theory was
tested on a product of low-to-medium complexity with about 60 technical solutions (a
handheld vacuum cleaner), and yielded promising results.

Further research

More research and practical application is required to conclude whether the proposed
modifications to MFD consistently improve output, in particular on more complex products
with more interfaces or high innovation content. New types of Convergence Properties may
be required in some cases. For example, how can Industrial Design and Manufacturing
considerations be included? New types of heuristics may be required in products where no
strong flows are present. That may be the case in modular storage systems (bookshelves, for
example). Is there an underlying Theory of Convergence Properties, such as the Theory of
Properties proposed in [11]?
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1. Introduction

The need to compare alternative approaches to modularity in a systematic way has arisen
from the research idea that new hybrid approaches may be created to improve the main
approaches on which they build. The purpose of the present paper is to answer the following
two questions: (1) How may we compare the approaches in a consistent manner? (2) Do
derived approaches improve on the main approaches they build on? In addition, we will
discuss which of the main approaches seems most promising as a basis for new derived
approaches.

Ulrich and Eppinger [Ulrich, Eppinger 2008] start with a simple idea, the chunk. Chunks are
physical building blocks. Modular architecture has the following properties: (a) chunks
implement one or a few functional elements in their entirety, and (b) the interactions between
chunks are well defined and are generally fundamental to the primary functions of the
product. We add one more point from [Erixon 1998]: A module is a physical building block
with standardized interfaces selected for company-specific reasons. In the remainder of this
paper, the phrase “approach to modularity” will be used to mean methods by which modular
architectures are defined. We will look at five such approaches. According to [HOItta-Otto
2005] there are three main approaches to modularity: (1) Heuristics, (2) Design Structure
Matrix (DSM), and (3) Modular Function Deployment (MFD). In addition to these, we will
look at two hybrid approaches: (4) Functional-Strategic DSM [Blackenfelt 2001], and (5)
Extended Implementation Structure Matrix [Sellgren, Andersson 2005].

2. Overview of Methods

For the purpose of providing a brief overview, we will focus on five critical aspects of each
method: how data is organized, data types that can be represented, relationships captured,
type of interactions or dependencies, and how modules are generated.
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Organization of data is particularly important in large projects and for selecting the right type
of computer software.

Data type refers to one or several of the following: Technical Solutions (abbrev. TS; to
describe how functions are realized), Customer Requirements (abbrev. CR; to describe the
benefits customers are looking for in the product), Product Properties (abbrev. PP; to be able
to make quantitative statements about the performance level of certain functions), Module
Drivers (abbrev. MD; to describe the company specific strategy), Functional Requirements
(abbrev. FR; statements about functions that must be performed by the product, used
primarily in synthesis), and Functions (abbrev. FU; transformation of an input into an output,
often expressed as verb plus noun, used primarily in analysis).

Relation is a reference to comparisons between pairs of data types. For example, QFD is a
relation between Customer Requirements and Product Properties.

Interaction is the aspect of the Relation we are interested in. In a Task-based DSM, for
example, the interaction is related to Design sequence, e.g., which Technical Solution of the
two would be designed first. Other Interactions are Degree of causality (to what extent does
changing one drive change in the other), Spatial (should Technical Solutions be close or far
apart in the final product), and Flow (exchange of Energy, Matter, or Information).

Module generation refers to definition of groups of TSs into Modules. The Methods take
three approaches to Module generation: Hierarchical Clustering creates groups where the TSs
have similar PPs and MDs, Least interaction minimizes the dependency between groups of
TSs, and Rule-based looks for certain patterns of Flow.

Heur. | DSM | eISM | MFD [FS-DSM
Organi- | Matrix
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(Figure continues on next page)

ANANENANERAN

70



Heur. | DSM | eISM | MFD |FS-DSM
1S-TS ‘/ \/ ‘/
TS-MD ‘/

IS-PP

Rela-

. CR-I’P
tions

NN

CR-FR

TS-FR

TS-FU v

FU-FU /

Spatial

Inter- Degree of
action | causality
Design
sequence

Flow (Energv /
Matter / Inlo.)
I_!lierarc-hical /
Module (I:elrll:;i"mm
geNCra- | ipteraction / J
tion
Rulc-bascd \/ /

Figure 1. Overview of all five methods
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In Figure 1, a black checkmark means the line item in question is applicable to the particular
Method; a shaded checkmark means normally it is not, but with a minor modification it could
be. DSM is a reference to Task-based and Component-based DSMs, see section 2.2.

2.1. Heuristics

Within modular architecture, heuristics try to capture how designers actually think. According
to [Gilovich, Griffin, Kahneman 2002], heuristics are based on patterns of biased judgments,
represent sensible estimation procedures, yield “quick and dirty” solutions, draw on
underlying processes that are highly sophisticated, and are normal intuitive responses to even
the simplest questions about likelihood, frequency, and prediction. The heuristics we look at
here are based on flow of matter, energy, and information between functional elements in a
function-structure diagram [Stone, Wood, Crawford 1998]. Table 1 summarizes the three
rules. Readers interested in other heuristics (with some features similar to Module Drivers)
may refer to [Zamirowski, Otto 1999].
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Table 1. Heuristics related to flow [Stone, Wood, Crawford 1998]

Heuristic Description
Dominant flow If the same flow of matter, energy, or information goes through a
sequence of functions, they should form a module.
Branching flow If a flow splits up into parallel function chains, the subfunctions that
make up those chains should form modules.
Conversion- Functions that convert one type of flow into another should form
transmission modules. If the conversion is followed by transmission, that should be
part of the same module.

[Holtta-Otto 2005] compares all main approaches on their level of repeatability and offers a
score based on the ratio of students that successfully apply each of the approaches. The
heuristics in Table 1 scored quite high, in particular the application of Conversion-
transmission. However, repeatability of a given flow heuristic might be high on a given
function structure diagram, but in general the creation of the diagram itself is not a highly
repeatable activity. This is supported by [Ulrich, Eppinger 2008] saying “There is no single
correct way of creating a function diagram and no single correct functional decomposition of
a product.” In contrast, [Kurfman et al 2003] achieved 80% repeatability in an experiment
where groups of subjects analyzed a toy ball gun with 15-20 functions to create a functional
model, using a particular method. In the author’s experience, repeatability would be lower for
significantly more complex products.

2.2. Design Structure Matrix (DSM)

DSM may be thought of as a generic way of mapping interdependencies. Component-based
DSM can be used to define modules in a product architecture [Holtta-Otto 2005]. Task-based
DSM may be used to determine the ideal sequence of development tasks in a project [Ulrich,
Eppinger 2008]. The Component-based DSM in Figure 2 shows the task of developing B can
only be completed once the task of developing A is complete: these are sequential. The tasks
of developing C and D both depend on the task of developing B, but once it is concluded, C
and D can be developed in parallel. Finally, the tasks of developing E and F are coupled. The
best sequence is one that minimizes the number of coupled tasks. DSM predicts E and F
should form a module [ibid.].

Technical Solutions |

A 7 Sequential

gl X B

2

% X c Parallel

3 /

2 X D

K Couplod < E X
XKF

Figure 2. DSM is based on mapping dependencies
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2.3. Modular Function Deployment (MFD)

MFD [Erixon 1998] is based on the idea of decomposing CRs into specific statements and
linking them to measurable and controllable PPs, decomposing the product into TSs,
describing how each TS impacts the performance on a particular PP, and grouping TSs
carrying similar properties and strategic intent to define modules. Figure 3 shows how CRs,
PPs, TSs, and MDs are visualized in MFD.

Figure 3. MFD uses three interlinked matrices

The grouping of Technical solutions by Product Property and Module Driver may be done
manually or using statistical methods such as hierarchical clustering. Module Drivers are
central and unique to MFD, and are presented below in Table 2.

Table 2. The Module Drivers

Module Driver Strategy Module Driver Strategy
Common unit Use solutions in many Recycling Simplify scrapping
variants
Carry over Use solutions in future Strategic supplier  Use external partner
generations available to develop, produce
etc
Technical Change specification Separate testability Test separately before
specification level final assembly
Styling Create styling variation Upgrading To increase after-
sales
Planned design  Allow for design changes Process / Protect scare
change organization resources in
production or design
Technology push Incorporate new Service / Easy field
technology Maintenance replacement

2.4. Functional-Strategic DSM

This method [Blackenfelt 2001] is a hybrid between DSM, MFD, and Heuristics. From DSM,
it takes the format for describing dependencies. From MFD, it adds strategic considerations,
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but using the Condensed module drivers in Table 3, instead of the original twelve (Table 2).
From Heuristics, it adds flow of Matter, Information, and Energy. To this, Blackenfelt adds
degree of Spatial interaction.

Table 3. Condensed module drivers [Blackenfelt 2001]

Condensed module Original twelve Module Drivers
drivers
Commonality Technical Specification, Styling Common Unit
Carry Over Technology Push, Planned Carry Over
Development |
Make or Buy Process/Organization Strategic Supplier
Life Cycle Separate Testability,
Service/Maintenance,
Upgrading, Recycling

Some Module Drivers are mutually conflicting. As an example, a conflict exists between
Technical Specification (several performance levels) and Common Unit (one level only).
Module Drivers belonging to the same Condensed module driver are said to be supporting if
they appear on the same side of the dotted line in Table 3, conflicting otherwise.

For any pair of Technical Solutions, conflicting or supporting strategic objectives are
indicated using a scale from -2 to +2 in the Strategic DSM. A similar scheme is used in the
Functional DSM. For example, a score of +2 on Spatial would imply two Technical Solutions
must be adjacent in space to function; a -2 would signify they absolutely may not be. Figure 7
shows the template for the two matrices. CO, C, MB, and LC refer to the Condensed drivers.
S, M, 1, E refer to Spatial, Matter, Information, and Energy, respectively.

I Technical Solutions I I Technical Solutions I
co|l C S| M
MB|LC | E
" "
£ £
° co|l C 2 S Mm
- .-
=2 2
'g MB|LC 'g I
i co|c 8 S| m
H £
E MB|LC S 1| E
5 -
co|lcC S| M
MB|LC | E

Figure 4. Strategic DSM (left) and Functional DSM (right)

The process of generating modules involves a three-step rule-based algorithm operating on
both matrices.

2.5. Extended Implementation Structure Matrix (eISM)

elSM [Sellgren, Andersson 2005] is a hybrid of DSM and MFD. From DSM, it takes the
format for describing dependencies. From MFD, it takes QFD and DPM, with FRs replacing
PPs. Like MFD, the elSM uses three interlinked matrices, as shown in Figure 5.
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Figure 5. elSM uses three interlinked matrices

The creators of elSM, state the purpose of their approach is “to find a way to bridge the gap
between the ‘hard’ technical requirements and the more ‘soft’ interactive requirements”
[ibid.]. The FIM represents that bridge. Functional Requirements are stated as verb/noun
combinations, which allows elSM to describe more easily how the product is used. A
comparison of Figure 3 and Figure 5 shows both MFD and elSM translate CRs into TSs using
an intermediate data type. The advantage of PPs is they can be measured, controlled, and
assigned a goal value. This is not possible for FRs which may be a disadvantage in many
practical applications. On the other hand, soft interactive requirements are harder to describe
with PPs. In the end, the choice of PP or FR would depend on the application.

3. Method of Comparison

3.1. Initial set of criteria for comparison

The criteria used in this comparison are based on the works by [Huang 1996], [Holtta-Otto
2005], [Keller, Binz 2009] and own project experience. The criteria are shown in summary
format below.

Table 4. Summary of criteria used in analysis

Source Category Criteria
Huang Functionality Gather and present facts, Measure performance, Evaluate
requirements whether design is good enough, Compare design alternatives,

Highlight strengths and weaknesses, Diagnose why an area is
strong or weak, Provide redesign advice, Predict what-if

effects, Carry out improvements, Allow iterations to take place

Operability Easy to learn or well-known concepts, Systematic (all relevant
requirements issues considered), Represent product and process data,

Teaches good practice, Little effort for designer,
Implementation cost and effort, Rapidly effective, Stimulates
creativity
Flexibility & Allows some degree of flexibility, Reasonably accurate
Focus
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Source Category Criteria

HOltta- Overall Identifies commonality between products in family, Identifies
Otto requirements interfaces that are simple, Approach is easy to use, Module
output is repeatable, Module output is feasible (realistic)

Keller/ Revisability Validation, Verification
Binz Pract. Relev. & Innovativeness, Competitiveness
Competitiveness
Scientific Sound. Objectivity, Reliability, Validity
Comprehensibilit ~ Comprehensibility, Repeatability, Learnability, Applicability
y
Usefulness Effectivity, Efficiency
Prob. Specificity Problem Specificity
Struct. & Handling Complexity, Problem Solving Cycle, Structuring,
Compatibility Compatibility
Flexibility Flexibility
Experi- Overall Describes customer requirements, Allows for concurrency,
ence requirements Features integrated views of data, Accounts for basic physics,

Captures product geometry, Supports strategic objectives, Can
use software support, Simplify handover to design, Allows
adjustment to tool itself

Huang’s requirements are very focused on what-if-scenario modeling and ease of use. The
Holtta-Otto requirements are very much geared toward interface generation and usefulness of
output. The Keller/Binz requirements are very comprehensive but not necessarily specific to
architecture generation. The author’s own requirements are architecture-specific and
somewhat similar to the Holttd-Otto requirements, but neither set is as comprehensive as
either Huang or Keller/Binz. For these reasons, it was relevant to find one set of criteria taken
from these models.

4. Results
Figure 6 is a dendrogram of the result, a hierarchical representation of the similarity between
criteria.
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Figure 6. Dendrogram of the criteria in Table 4.
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A dendrogram shows the relative proximity of the different criteria. The basis of the
Dendrogram in Figure 6 is a table of distances established by pairwise comparison. Where the
dendrogram crosses the gray line, there are 11 subclusters. The final list includes a bias
toward the criteria based on Experience, since several of those were not adequately captured
in the group of 11 subclusters. Figure 6 indicates that both “Diagnose issues” and “Model
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scenarios” are potential evaluation criteria. However, it was found that none of the methods
really score on either of these. Therefore, those two were not included. Also, “Allows for
concurrency” does not seem to belong in “Easy to learn & use” and was therefore separated
and included as “Concurrent execution”. The result is shown in Table 5.

Table 5. Final list of 12 criteria

Criteria Explanation
Flexibility Method is flexible, allows adjustments
Concurrent execution Promotes concurrent execution in groups
Easy to learn & use Easy to learn, well-known concepts
Software support Conducive to software support, including large projects
Design handover Simplify handover from concept phase to detailed design
Repeatable Method is repeatable and allows iterations
Competitive Method represents an improvement over existing methods
Scientific Based on science, valid, verifiable, accurate
Support interfaces Supports generation of interfaces in modular architecture
Common sense Allow common sense (physics & product geometry)
Specific to modularity Specific to generation of modular architecture
Describe data All data, including customer requirements and strategic intent

To determine whether the criteria seem relevant, the author made an experience-based
assessment of each approach, using the 12 criteria. The result is shown in Figure 7.

. Strong support

O Medium support

O Weak support
No support

Figure 7. Final scoring of the five methods

Concurrent execution is possible, to some extent, with matrix-based Methods. In MFD, for
example, QFD and DPM scoring can be done by parallel teams, once the PPs are determined.
Application of Heuristics depends on a function structure diagram. Before such a diagram is
created, it is quite hard to apply any of the rules.

Software support is possible with all methods, but as discussed above, Heuristics relies on a

function-structure diagram. Creating such a diagram involves manipulation of graphs, which
may be particularly disadvantageous in large projects.
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Describe data. MFD describes customer requirements and strategy, as we have seen. FS-
DSM does capture strategy, but not requirements. elSM features neither but is unique with its
“soft interactive” which increases its score somewhat. Heuristics and DSM are weaker for
these three data types.

Support interfaces. MFD and FS-DSM have specific features to support interface generation
(make sure modules are clean in terms of strategy and either properties or functions). FS-
DSM is stronger in the way it models interactions, but it lacks Product Properties.

Specific to modularity. DSM grew out of a need to plan the sequence of design activities in
large projects. The other four methods have specific features to support the generation of
modular architecture.

Easy to learn & use. Heuristics relies on a set of rules. One study [Ho6ltta4-Otto 2005] showed
it is actually quite difficult to apply the Dominant flow and Branching/Combining rules
consistently. In FS-DSM, the algorithm for generating modules is complex and not easy to
understand.

Design handover. MFD is the only method that deals consistently with product property goal
values, which is an important input in design. MFD and FS-DSM deal with strategic
considerations which influences make/buy decisions, among other things. elSM captures “soft
interactive requirements” which is shown to be important in design of certain types of
products [Sellgren, Andersson 2005]. DSM naturally captures the design sequence.

Scientific. Heuristics is well supported by empirical research on hundreds of real products,
but its theoretical foundation is not as clear as the other methods.

Repeatable. Because of its simplicity, DSM is the only method that receives a full score here.
The other methods are believed to be roughly equal in terms of repeatability.

Comepetitive. Full score here indicates the method captures something that is unique to that
method. Heuristics does a good job of describing the underlying physics of the product. MFD
is unique in its treatment of customer requirements. eISM, as we have seen, is strong on “soft
interactive”. FS-DSM is based on integration of MFD and DSM and offers nothing truly new
(except the integration itself).

Flexibility is lower in DSM because of the fixed TS-TS format. Strategy may be
incorporated, as in FS-DSM, but it requires an additional matrix, so it is no longer a pure
Component-based DSM.

Common sense. Heuristics, DSM (Component-based) and FS-DSM naturally support
underlying physics and spatial product considerations.

5. Conclusions and Discussion

This paper outlines a systematic approach to the comparison of methods across a consistent
set of criteria, based on literature research and own experience. Subjectivity cannot be
avoided, but the process of first determining criteria based on external sources, and second
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scoring the methods on these criteria avoids the problem of a completely opinion-based
analysis, which will only ever confirm what we knew from experience.

How did the Methods fare overall? For large projects, where Describe data, Software
support, and Concurrent execution may be important, the matrix-based methods scored
higher than Heuristics, which might be better suited to small projects where Flexibility is
valued. Of the matrix-based methods, pure DSM seems to offer fewest advantages, apart from
Easy to learn & use.

How did the hybrid Methods fare, specifically? Overall scoring indicates FS-DSM and elSM
are at least as strong as either MFD or DSM, on which they are built. In fact, FS-DSM is
stronger than MFD in the way it deals with spatial considerations (absent in MFD), and
stronger than DSM in its integration of strategic considerations. However, module generation
is more complex than in either of the original methods. Similarly, eISM successfully captures
“soft interactive”, absent in both DSM and MFD, but sacrifices both property goal values and
strategic considerations (present in MFD). Do hybrid methods offer improvement, then? Yes,
but they seem to suffer from new disadvantages, absent in the original methods.

What would be the best method on which to base new hybrids? Several approaches are
possible. It has been shown how DSM can be extended [Blackenfelt 2001] to cover degrees of
strategic and spatial considerations (FS-DSM). One path would be to attempt to add property
goal values, the absence of which is perhaps the main weakness in FS-DSM. MFD is open
enough to accommodate new data types, so extending MFD with spatial or “soft interactive”
properties might be another path. Finally, eISM can easily be extended to cover strategy,
essentially by adding a MIM (see Figure 3) to the ISM (see Figure 5). Module generation may
be similar to the approach in FS-DSM.
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Abstract

Modularization approaches are often used to restructure mature products with known
technical content, but not to assist new development of products with a high innovation
content or soft interactive requirements. This paper investigates if various clustering
techniques can be used to identify module candidates in matrix representations of evolving
product properties, including interactive properties, and component architectures. The
proposed approach is tested on the hybrid drive train of a novel forwarder. Forwarders are
used in the forestry industry to transport logs from the felling area to a landing area close to a
road accessible by trucks. Continuous efficiency improvements, new emission requirements,
and the need to configure machine for different applications stresses the need for a modular
product architecture.

Keywords: DSM, forwarder, hybrid technology, new development, dendrogram.

1 Introduction

To be able to meet the international competition, a sustainable productivity increase of 2 to 3
%, on an annual basis, and a significant improvement of the fuel economy is required [1]. At
the same time, new legislation is significantly decreasing the allowed emission levels from the
diesel engine. The modest size of the international forwarder market, about 3000 machines
per year, combined with a relatively large product variety required to target very different
tasks and conditions, stresses the need for a modular architecture with an integrated forwarder
and harvester platform, a hybrid driveline, and all-wheel drive and steering.

First, the concepts of component-based Design Structure Matrix (DSM) [2] and function-
structure heuristics [3] are shown, followed by Modular Function Deployment (MFD) [4] in
an extended form that incorporates function-structure heuristics [5]. Second, a development
case for a novel forestry machine is presented, where the results of clustering analyses based
on MFD and DSM are compared. We show that when results differ, and argues that this may
indicate that further decomposition of technical solutions is required. Finally, the ability of the
methods to assist modularization of novel products is discussed.

2 Frame of reference

A DSM may be thought of as a generic method of mapping interdependencies. A
(component-based) DSM can be used to identify modules in a product architecture [6]. In
Figure 1 below, technical solutions E and F have a non-causal interaction, and thus form a
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Class Category |Sub-category |Purpose
Branching- . N
Function- combining Configure system by application type
structure Dominant flow |Apply function-structure heuristic
Corwergence heuristics Conversion-
Properties .. Not used
transmission
Geometry of product Traditional product geometry (usability and service)
Interactive property Change soft interactive product aspects (feel)
System Selected by engineer subject to technical constraints
Product . . . .
Properties Option Customer selectable optional features (discrete choice)
Variance Customer selectable performance levels

Hierarchical clustering has been proposed [7][10] as an alternative way of identifying module
candidates. It may be applied using different algorithms, such as Ward and Centroid , see e.g.
[11]. All algorithms rely on a distance metric, to determine whether technical solutions share
similar scoring on product properties and module drivers. There are different distance metrics,
such as Euclidean distance, Squared Euclidean, Manhattan city-block, and Pearson
correlation, see e.g. [12]. Pearson is radically different from the other three in that it

Figure 3. Properties used in the present study

essentially looks at the angle between vectors instead of absolute distances between points.

Product Properties

ust. Req.

Quality Function
Deployment
QFD

Figure 4. PMM extended with convergence properties and DSM
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3 Case study — hybrid drive
3.1. Dealing with options in the QFD matrix

HFO04 Dominant electrical power flow
HI002 Allow small movements (fine control)
HPO10 HVDC battery charge (Ah)

HPO16 Hydraulic cylinder max force

HPO15 Hydraulic valve linearity

HPO14 Hydraulic accumulator energy
HPOO1 Starter motor power

HPO11 HVDC supercapacitor charge (Ah)
HPOO8 HVAC generator power

HPO12 HVDC to HVAC converter power
HPO19 Joystick degrees of freedom

HPOO4 Presence of HVDC to LVDC converter
HPOOS Presence of HVAC to HVDC converter
HPO17 Actuator max force

HIDD3 Prevent unsafe conditions

HI001 Provide control of all DOFs

5
2
2
£
g
£
Z
5
3
8
<]
g
o
T

HPOO7 Fuel tank volume
HP013 Hub motor power

CRO43 Machine does not tip over

CRO49 Prevent unsafe operation of machine
CROO05 Protect ground from tearing

CRO52 Best possible traction

CRO11 Operate in remote locations

CROS0 Easy to maneuver

CRO51 Fuel efficient

CRO16 Efficient loading and unloading cycle
CRO35 Primary controls are efficient and comf.
CROO6 Operate in all weathers & conditions
CRO25 Cook and refrigerate food

CRO19 Sufficient lifting capacity

CRO14 Ability to get stuck forwarder unstuck

21 0 18 12 9 9 9 3 9 9 10 9 9 15 18 9 4 18 9

Figure 5. Quality Function Deployment matrix for hybrid drive

The QFD in Figure 5 shows two option properties, HP004 and HP0O05, that both dictate
technical solutions to address two particular technical considerations: whether the vehicle
uses an HVDC-LVDC converter to generate power for starter motor (and applications like
cooking), and whether power is regenerated when vehicle brakes or moves downbhill.
Specifying specific solutions in the QFD, as a rule, is not a good idea. In this particular case,
these two optional features were determined to be relevant in terms of project scope. The
introduction of these option properties is a convenient shorthand for several properties such as
starter motor power, current control, regeneration efficiency, maximum brake disc heat power
etc that are solution-independent alternatives.

3.2. Enabling flexible configurations
Another high-level desire was that of configuring the machine flexibly for different
applications. The branching-combining heuristic in Figure 2 is very useful in this particular
case, because it helps us identify one of the key interfaces that allow flexible reconfiguration
of the drive train, as shown on the left in Figure 6 below. A proposed DPM representation of
the same relation is shown on the right.
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Figure 6. Branching-combining heuristic and proposed DPM representation

3.3. Function structure of hybrid drive

A conceptual function structure diagram was created for two reasons. First, it is a practical
first step toward the technical solution decomposition. Technical solutions are used in both
MFD and DSM. Second, to score a component DSM, we need to understand the flow of
energy, matter, and information. A high level function structure diagram is shown in Figure 7.

Figure 7. Function structure diagram of forwarder

Figure 8. Hybrid series drive represented as a high-torque load

The forwarder has four main high-torque loads: three drives (series/parallel/mechanical) and
the hydraulic crane. A series hybrid is the main option in the project, because of the improved
ground clearance resulting from hub-mounted motors instead of a mechanical transmission.
The series hybrid is shown in Figure 8. Power dissipation is not shown.

3.4. Decomposition of the inverter
The inverter has to support several hybrid operating modes, as shown in Figure 9.
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Figure 9. Inverter must support at least three hybrid configurations

In addition to these three operating modes, we wish to offer an optional HVDC to LVDC
conversion feature. We clearly cannot view the inverter as a black box, even on this
conceptual level. A proposed next level of disaggregation is shown in Figure 10.

Figure 10. Proposed conceptual decomposition of inverter

Please note that this graphic does not necessarily reflect the inner workings of any actual
inverter but is meant instead to illustrate the idea of further decomposition of selected system
components. Three main functions are apparent here. First, conversion of electrical power
from one form to another happens in one of three converters. Second, the flow of energy is
controlled by some device we envision as a switching grid. These are the electrical flow
controllers, which we assume must come in HYDC and HVAC versions. Third, there is a
central intelligence that controls these devices, and makes instant decisions to reroute power
when driving conditions change. The inverter does not rely on the vehicle computer for these
decisions, to avoid some unsafe state. If it did, and communications failed, the inverter could
conceivably end up in some unsafe state. Armed with this deeper understanding of the
inverter, drive-related customer requirements and product properties from Figure 5, and the
component-level interactions shown in Figure 7, Figure 8, and Figure 10 we may create a
complete PMM with convergence properties and DSM, as shown schematically in Figure 4.
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4 Results

4.1. Result of MFD clustering

The resulting dendrogram, from DPM clustering, is shown on the left in Figure 11 (generated
using SPSS [13]). Note how the torque splitter ends up in a cluster with other
communications-related or electronic devices. This is not caused by a simple error in scoring.
Rather, the choice of distance metric is the main reason, and when we re-run the clustering
with Centroid / Pearson correlation, we get the dendrogram shown on the right in Figure 11.
Here, we see the torque splitter together with diesel engine and clutch. They are all
mechanical and all related to the production or distribution of torque.

Figure 11. Dendrograms obtained by two algorithms / distance metrics

The two vertical lines intersects the dendrograms where there are exactly 13 subclusters.
MFD-theory predicts [4] the ideal number of modules is equal to the square root of the
number of technical solutions, which would be around 6 in this case. This is only true,
however, if the decomposition is such that a technical solution corresponds to a simple
component. For small to medium-sized systems on a high level of abstraction, the authors
have found that a good guess is usually between one third and one half of the number of
technical solutions. In this case, the vertical line makes it possible to compare the output of
the two runs more easily.

4.2. Result of DSM clustering

A component DSM for the drive system is shown in the graphic below. The output was
generated with the clustering feature of an Excel macro called Complex Problem Solver by
RedTeam [14]. If we assume, as we did in the interpretation of the dendrograms (Figure 11),
that a suitable module might have up to half a dozen technical solutions, we may add the
boxes shown in Figure 12. When boxes overlap, we have to make a manual assessment. We
can now compare the output of MFD with the output of DSM. The groupings in the column
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labeled technical solution reflect the authors’ assessment of the output. The electronic inverter
has been shaded, because the inverter was decomposed, as shown in Figure 10.

Figure 12. Design Structure Matrix for drive train system

4.3. Comparison of output from MFD and DSM

The outputs of MFD and DSM are compared in Figure 13. Where the predictions by MFD
and DSM differ significantly, it is important to keep in mind that DSM deals with interactions
only. MFD may capture some of those interactions (shared Product Properties), but more
importantly, why things may need to change, for customer reasons (configurations and
performance levels) or company-specific reasons (the drivers). Note how DSM predicts
TS033 HVAC generator and TS019 Energy flow controller HVAC belong together. Figure 10
shows how TS019 changes depending on hybrid drive type and whether regeneration is
enabled. For series hybrids, the HVAC generator might be the same with or without
regeneration, so that might be an argument not to group it with the HVAC energy flow
controller.

| MFD with Convergence Properties | | DSM |
Ward/ Centroid/
Squared Pearson SNg3z8yg
Euclidean Technical Solution Correlation Oooooo
W01 TS008 Electronic throttle co1

TS008 Fuel tank
TS012 Low-torque loads (A/C etc)

Wo2 TS013 Belt and pulley co2
TS014 Low-voltage generator
Wz TS015 Low-voltage rectifier co3

TS016 Electric starter motor
TS017 Starter battery
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(figure continued from previous page)

W04

TS010 Diesel engine
TS011 Clutch
TS004 Torque splitter

Cco4

TS006 Vehicle computer
TS007 Joystick

Ccos5

TS005 Actuator

W05

TS003 Bus transceiver

coe

TS002 Control bus

Cco7

TS001 Vehicle orientation sensor

TS032 Electronic inverter

cos

TS035 Inverter controller

W06

TS027 HVDC to LVDC converter

Cco9

TS026 HVAC to HVDC converter

wo7

TS018 Energy flow controller HYDC
TS019 Energy flow controller HVAC

W08

TS020 HVDC to HVAC converter

W09

TS021 Electric hub motor

W10

TS033 HVAC electric generator

Cc10

W11

TS022 High-voltage battery
TS023 Supercapacitor

C11

TS028 Wheel

W12

TS028 Differential
TS034 Gearbox

TS031 Hydraulic accumulator

c12

TS030 Hydraulic pump

W13

TS024 Hydraulic valve
TS025 Hydraulic crane

C13

Figure 13. Comparison of output from MFD and DSM

The final module proposal is shown below in Figure 14. For each module, one or several
module variants are listed, as well as three basic configurations: one series hybrid without
regeneration of power, one high-power series with regeneration for use in cold climates, and
one parallel hybrid.

Non-  Powerful
Arctic Arctic Standard
Module  Technical solutions  Comment / Explanation ‘Variants serial serial parallel
MO Electronic throttle, Brought together by dominant flow {of fuel). Geometrical MO1A Std volume (250 liters), MO1B Extra large MO1A MO1B MO1A
Fuel tank separation probably necessary. Fuel tank varies by volume. (350 liters)
Could share space with M19,
MO2 Low-torque loads, Belt and pulley should provide a t way of ing MO2A Standard arrang t for low-voltage MO2A MO2B MO2A
Belt and pulley multiple low-torque loads. generator and A/C, MO2EB for low-voltage gen only
MO3 Low-voltage Strong candidate for Common Unit, unless low-voltage DC level MO3A Standard generator & rectifier for 24V MO3A - MO3A
generator, Reclifier needs to be selectable (12 or 24V).
MO4 Starter battery De-facto module. Varies by capacity. MO4A Standard generator with 55 Ah battery, MD4B  MOD4A MO4B MO4A
Standard generator with 75 Ah battery
MOS Electric starter motor Mandatory. May need higher power in cold climates. MO5A Standard starter motor, MOSB Cold-climate MOSA MOSB MOSA
starter motor (higher power)
MOE Torque splitter, Torque splitter should physically be located on the cutgeing MOEA Deutz TCD 2012 6-cyl 110 kW at 1500 rpm, MOBA MOEB MOBA
Diesel engine, Clutch shaft of the engine. It enables the connection of high-torque MOEE Deutz TCD 1013 &-cyl 200 kW at 1500 rpm
load, plus the belt and pulley arrangement. Power variation
expected
MOT Vehicle ical chall . Could p be co-located with MOTA Standard resp . MO7B Enh d MOTA MOTE MOTA
Joystick Jjoystick? responsiveness
MO& Actuator May come in a few variants (rotationAinear movement, MO8A Standard, MOSE Enhanced linearity MOBA MO&B MOsA
weak/strong, slowfast etc)
MOS Bus transceiver This module communicates with the Microprocessor, but can MO94 Standard transceiver MOSA MOSA MOgA
also act stand-alone, for example with an Actuator.
M10 Control bus Pre-wired to any location where access to control bus might be  M10A Standard bus M10A M10A M10A
required.
M11 Vehicle crientation  Example of a sensor required for a particular option. All sensors M11A Sideways tilt only, M11B Full vehicle M11A M11B M11A
sensor should have the same interface if possible, electrically and i i
mechanically,
- Electronic inverter  Inverter is not one single module. Decomposed into converters - - - -
and controllers, see below,
M12 Inverter controller Controls the inverter. Switches rapidly between motor mode and M12A Serial drive no regeneration, M128 Paralle| M124 Mi12B M128
generator mede. Prevent unsafe conditions even if link to or serial drive with regeneration
wehicle computer fails.
M13 HVDC to LVDC Generate LVDC (12 or 24V) from HVDC. Would replace M03 M13A Standard power 12V, M13B Standard power WA M13C -
converter {24V only). Useful option in cold climates where more energy 24\, M13C Extra power 24V
may be required to start the Diesel engine.
M14 HVAC to HVDC Rectify HVAC from generator, to store in M19. Needs sensors  M14A Standard converter M14A M14A
converter and related circuilry so as not to overcharge batteries. Module
enables regeneration of power.

(figure continues on next page)
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(figure continued from previous page)

Non-  Powerful
Arctic Arctic Standard

Meodule  Technical sclutions  Comment / Explanation Variants serial serial parallel
M15 Energy flow This device controls the flow of energy going in and cut ofthe  M15A HVAC in plus HVAC out for series without M15A M15C M15B
controllers (HVDC,  inverter, both DC and AC. When HVDC flow controller is regeneration; M158 HVDC and HVAC bidirectional
HVAC) present, M13 may be connected (e.qg., not available in series for parallel drive; M15C HVDC and HVAC mono
without regeneration). and bidirectional for series with regeneration
M16 HVDC to HVAC Generate electrical power from stored (HV) energy. Both power M17A Standard power, M17B Extra power - M17B M1TA
converter level variation and possible Technology Push.
M17 Electric hub motor Comes in different torques and power ratings. Hub motors also  M15A Standard hub metor, M15B Extra streng M15A M15B NiA
work as generators. Not available in parallel configuration.
M18 HVAC electric Part of the serial hybrid drive. Converts torque to HVAC. M16A Generator only, M16B Motor/generator for M16A M16A M16B
generator Matorfgenerator variant for parallel has different mechanical parallel

interface (both ends of rotating shaft available)

M19 High-voltage battery, All energy storage conveniently focused in one single module.  M19A 4x supercapacitor Maxwell EMODO0063-P125- - M19A M19A
Supercapacitor Could share space with MO1. B14 (100 Wh at 450 V, total peak power 400 kW)
plus 9x Effpower LIC Power battery 150\ (total
peak power 270 kW)

M20 Wheel Mandatory. Power comes either from mechanical drivetrain or  M20A Standard wheel, M20B Extra-wide M204 M20B M20A
hub-mounted electric motors.
M21 Gearbox, Differential This module is essentially the mechanical drivetrain. Same M20A Mechanical drive front wheel-pair
interface as all other high-torgue loads.
M22 Hydraulic Optional. May improve perfarmance of hydraulic sub in  M22A dard accumulator M22A M224 M22A
accumulator terms of max power.
M23 Hydraulic pump Mandatory if vehicle has hydraulic subsystem. Connects as any M23A Standard pump, M23B Extra-powerful M23A M23B M23A
ather high-torque load. Pawer level variation expected
M24 Hydraulic valve, If you have a crane, you need a valve to control it. If valve M24A Crane standard responsiveness, M24B M244 M24B M244
Hydraulic crane linearity needs to change or improve, that would be an Crane enhanced responsiveness

argument to place it in its own module

Figure 14. Modules, variants, and three basic configurations

5 Conclusions and discussion

The following conclusions can be made:
e MFD can be extended to support non-customer driven configurations
o Real world properties are not ideal
e For a medium-sized conceptual system the ideal number of modules is between one
third and one half of the number of principal technical solutions
e Disaggregate solutions further when MFD and DSM outputs are in conflict

The branching-combining heuristic proved particularly useful, in this case study. It required
six additional properties: one for each configuration plus two to separate torque production
and torque consumption. If you already know what you are driving towards, why not jump
directly to the conclusion? Such an approach probably works well in small systems, but in
very large systems, there is simply too much data to rely on an “intuitive” approach. The use
of heuristics in conjunction with more traditional property types may be necessary, to promote
convergence on certain solutions in a few subsystems, but allow the statistical processing to
address the rest.

Ideal properties are measurable, controllable, and solution-free, but convergence properties
typically are not. Does that mean the rigor associated with an appropriate selection of
properties is out the door? No. A rigorous selection of properties based on customer
requirements is a very good first step. Convergence properties, such as the ones shown in
Figure 3, may be introduced successively, to address geometrical concerns, known features,
spatial information et cetera. The hierarchical clustering should be re-performed each time a
new property class is introduced.

This study has 34 principal technical solutions, but a detailed hybrid drive train has thousands,
which is beyond the practical limit of a normal concept study. Project members must make
some decisions about the initial level of disaggregation. A useful rule-of-thumb might be: If
most of your technical solutions come out as modules in their own right, the level of
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disaggregation is probably insufficient. Comparing the output of MFD and DSM might be a
way of spotting areas where further disaggregation is needed. In this case, it pointed to the
need for further disaggregation of the HVAC energy flow controller. MFD grouped it with the
HVDC energy flow controller but DSM with the generator. Areas of commonality and
variance within the energy flow controller itself must be understood further to make the call.
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ABSTRACT

For clustering a large Design Structure Matrix (DSM), computerized algorithms are
necessary. A common algorithm by Thebeau uses stochastic hill-climbing to avoid local
optima. The output of the algorithm is stochastic, and to be certain a very good clustering
solution has been obtained, it may be necessary to run the algorithm thousands of times. To
make this feasible in practice, the algorithm must be computationally efficient. Two
algorithmic improvements are presented. Together they improve the quality of the results
obtained and increase speed by a factor of seven to eight for normal clustering problems. The
proposed new algorithm is applied to a cordless handheld vacuum cleaner.

Keywords Design Structure Matrix; Clustering algorithm; Stochastic hill-climbing

! Address all correspondence to this author. Email: fredrik.borjesson@modularmanagement.com

95



NOMENCLATURE
Table 1 summarizes the nomenclature introduced in the present paper.

Table 1. Nomenclature

Term Definition

Interaction Excha_nge of energy, information, material or an association of physical space
and alignment

Component Slmple physical entity which has Interaction with other simple physical
entities

ggr'(\/lponent- Matrix of Interactions between pairs of Components

Element (same as) Component

Cluster Collection of Elements

(noun)

cluster (verb) | generate a set of Clusters by means of an algorithm

IGTA Idicula-Gutierrez-Thebeau Algorithm for clustering Component-DSM

Thebgau S (same as) IGTA

algorithm

ClusterSize Number of Elements in Cluster

. Degree of fit between a selected Element and each of the existing Clusters;

ClusterBid S ) .
calculation includes a punishment for ClusterSize

Multicluster | Feature of IGTA where an element may be assigned to more than one cluster;

allocation occurs when more than one Cluster returns the highest ClusterBid

SMA Suppressing Multicluster Allocation, allowing an Element to be assigned to
one and only one Cluster

ITC Improved Termination Criterion, selecting candidate Elements from a list,
and subsequently deleting the Element from that list

IGTA-plus Modification of IGTA that includes two algorithmic changes, SMA and ITC

_Intra-clgster Interactions between Elements that belong to the same Cluster

interaction

!Extra—cl_uster Interactions between Elements that belong to different Clusters

interaction

TotalCost Sum of all Intra and Extra-cluster interactions, with an additional punishment
for the latter

DSM (i, j) Interaction between elements i and j

ClusterSize, | Number of elements in cluster y

DSMSize Number of elements in DSM

powcc Exponent used to penalize the size of clusters in the formula for TotalCost

INTRODUCTION

Design Structure Matrix (DSM) [1][2][3] has been used for the purpose of generating product
family architecture. Product families are based on the existence of modules: functional blocks
with standardized interfaces that allow products with varying performance levels, features, or
styling to be configured and manufactured efficiently [4]. Many researchers have identified
product family architecture as a useful response to the need for increased variety, while con-
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trolling complexity [5][6][7][8]. A particular type of DSM, Component-DSM, is concerned
with interactions between individual Components [1]. The transformation of Component-
DSM into proposed functional blocks of components is called Clustering. For small problems
with perhaps up to 50 components, a Component-DSM may be sorted manually. For larger
problems, this is not feasible, and at some point computer algorithms are absolutely
necessary. Sharman [9] used a DSM to study the structure of a gas turbine. The turbine was
divided into 31 “heterogeneous elemental sub-systems”, the relations between which were
mapped in a Component-DSM of non-binary values. Automated Clustering was performed
using the Thebeau Algorithm [10] (e.g., IGTA). Sharman performed twelve Clustering runs
with four sets of parameter values and identified several problems with the output, one of the
most important being the disappointing randomness of the output and the seeming need to run
the algorithm many times.

In recent years, Genetic Algorithms (GA) have been used for the purpose of clustering
Design Structure Matrices. Yu et al [11] used GA in conjunction with a Minimum
Description Length metric. Their DSM has about 80 Elements. The runtime of their
algorithm (compiled, written in C++) is stated as “about a day”.

Using GA and an objective function similar to the one used in IGTA, Whitfield et al [12]
studied clustering arrangements for a Climate control system with 16 Elements. Since this is
a relatively small matrix, runtime may not have been an issue, and no information is provided
about that.

The algorithm proposed in the present paper grew out of research into a related but different
topic: that of unifying DSM-based clustering with Hierarchical Clustering, often used in
Modular Function Deployment, MFD [13][14] . It quickly became clear that to obtain
reliably useful results, IGTA needs to complete thousands of runs. The application of IGTA
to an example case with 57 Elements and performing 10 000 complete runs took about seven
hours, which certainly does not invite “tinkering”. The need to improve IGTA so as to
execute more quickly was identified as a priority. During this work, two improvements were
identified, which improved speed almost by a factor of eight, reducing “night runs” to “lunch
runs”.

There are a few of reasons IGTA was selected as the basis for this work. First, IGTA is freely
available. It is written in Matlab and structured into program modules with clearly
documented interactions, making it easy to modify. Second, it has been around for a decade
and is known to be stable and bug-free. Third, IGTA has been used by others [9][15].

The present paper attempts to answer the following question: can IGTA be improved
substantially so as to execute faster and improve quality of output?
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IDICULA-GUTIERREZ-THEBEAU ALGORITHM (IGTA)

History of IGTA
IGTA is based on work by three researchers, John Idicula, Carlos Ifiaki Gutierrez Fernandez,

and Ronnie Thebeau. Idicula invented the original algorithm [16], which addressed the
problem of organizing tasks in product development projects. The algorithm introduced the
key concepts of ClusterBid and TotalCost, as well as the stochastic hill-climbing approach to
avoid suboptimal solutions. Three years later, Carlos Ifiaki Gutierrez Fernandez published C-
code [17] which integrated the algorithm in an Excel environment, as well as additional user-
control parameters. Finally, another three years later, Ronnie Thebeau translated the C-code
into Matlab, and made experimental determinations as to the best value for several control
parameters in the algorithm [18]. The code is freely downloadable on internet [10].

How IGTA works
For a complete explanation of IGTA, refer to [18]. We will focus on data representation, the

overall structure, and the formula for calculating TotalCost. Figure 1 shows IGTA as a
flowchart. IGTA moves Components from one Cluster to another, and tries to see if the
overall change represents an improvement. The algorithm randomly picks a Component from
an existing Cluster, and tries to determine if there is another Cluster where the Component
represents a better fit. The fit is the ClusterBid. A ClusterBid is calculated for each Cluster.
The highest ClusterBid “wins”, and the Component is moved to the corresponding Cluster.
To determine whether the new configuration is better than anything found before, the
algorithm calculates a quantity called TotalCost. The usage of two criteria, ClusterBid and
TotalCost, reflects Idicula’s original optimization strategy [16][19], and a deeper discussion
is outside the scope of the present paper.
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| X ] {
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Y
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Figure 1. Flowchart of IGTA
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The algorithm uses stochastic hill-climbing. It uses two random numbers to control the
stochastic behavior. By allowing random changes to occur — according to pre-determined
rules — the algorithm reduces the risk of getting stuck in local suboptimal solutions. As we
shall see, that does tend to happen anyway.

IGTA allows a single Element to belong to more than one Cluster. IGTA uses a matrix called
ClusterMatrix to keep track of the association between Elements and Clusters. Each row
corresponds to a Cluster, and each column to an Element. If Element j belongs to Cluster i,
then ClusterMatrix;; is set to one, otherwise zero. The number of Clusters is designated
Neiusters- A one-dimensional matrix called ClusterSize counts the number of Elements of each
Cluster. Table 2 shows the formula for calculating TotalCost [18]. The variables used are
summarized in Table 1.

Table 2. IGTA equations for calculating TotalCost
No Equations (IGTA)
1 IntraClusterCost =
(DSM(j,k)+ DSM (k, j))-(ClusterSize, "
2 ExtraClusterCost =
(DSM (j.k)+ DSM (k, j))- DSMSize"™
3 TotalCost =

IntraClusterCost + ExtraClusterCost

Current challenges and opportunities with IGTA
IGTA allows an element to belong to more than one cluster. We refer to this as multicluster

allocation. This is sometimes useful. In some cases we may prefer the algorithm to generate
an output where each element belongs to one and only one cluster. It turns out that if we are
willing to sacrifice multicluster allocation, it is possible to improve greatly the part of IGTA
responsible for calculating TotalCost.

IGTA randomly picks elements and tries to see if they fit better in another cluster. When we
are close to a very good solution, most elements are in their final cluster, and most such
random attempts to move an element result in no move being made. IGTA keeps no record of
the elements it has already tried, which means that it repeatedly evaluates moves that are
known to be meaningless. IGTA has a cutoff point where it essentially says, “Nothing has
happened for quite a while, I will assume | am done”. Depending on the settings of two
parameters, it may take hundreds of iterations to come to that decision, which may be
equivalent to half or two-thirds of the total number of iterations. The remedy we will explore
involves simply keeping track of the elements that have already been tried, and not pick those
again. This means the algorithm will never waste more iterations than there are elements in
the input data.
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We will refer to the first improvement as “suppressing multicluster allocation” (SMA) and
the second as “improved termination criterion” (ITC). These two algorithmic improvements
are independent of one another, meaning we can implement only ITC, if we want to allow
multicluster allocation, for example.

PROPOSED IMPROVED ALGORITHM: IGTA-PLUS

Suppressing multicluster allocation (SMA)
The implementation of SMA consists of two parts: dealing with the multicluster condition

and calculating TotalCost more efficiently.

Two or more ClusterBids could take on the same value. The multicluster condition occurs if
that value happens to be the highest value, in which case IGTA allocates the selected element
to all the Clusters with that ClusterBid value. This is the default behavior of IGTA, and we
refer to it as multicluster allocation. When the SMA feature is enabled, IGTA-plus deals with
the multicluster condition by randomly assigning the selected element to one of the Clusters
with the highest ClusterBid value. When we have dealt with the multicluster condition,
TotalCost may be calculated using the equations shown in Table 3.

Table 3. IGTA-plus equations for calculating TotalCost
No Equations (IGTA-plus)
1 10 = ClusterMatrix x DSM x ClusterMatrix’

2 ]O = Z IO“‘ : C{u.ﬁ'ferS'iZek powce

nfra
k=1
R ejusters Meluste

3 ]()o_l'm.- = Z . lo;; — ‘2 ‘IOM . DS‘J’MSYZ({ powce
=1 ! k=1

4 TotalCost =10., + 10

mtra extra

J=

The simplification comes from the insight that Equation number 1 in Table 3 collapses the
Component-DSM into a Cluster-DSM, where elements on the diagonal are the sums of inter-
actions within Clusters, any off-diagonal values are interactions between Clusters. The
equations in Table 3 may be implemented very efficiently in Matlab with just a few lines of
program code.

Improved termination criterion (ITC)
ITC involves keeping a list of elements that have not yet been tried. As elements are tried,

they are removed from the list. When the list is empty, the algorithm terminates. If a move is
made, the list needs to be reset. Figure 2 shows the principle of ITC.
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Figure 2. Flowchart of ITC
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EVALUATING IGTA-PLUS
IGTA-plus does not purport to make better modules than IGTA, it just claims to do it faster.
Thus, in evaluating IGTA-plus, we are interested in two questions.

1. Does IGTA-plus, in fact, generate solutions that are at least as good IGTA?

2. How much faster is it? And specifically, how much of the improvement is coming
from SMA and how much from ITC?

Test case
To answer these two questions, IGTA and IGTA-plus will be applied to a test case, a

Dustbuster from Black & Decker shown in Figure 3 and partially disassembled in Figure 4.

Figure 3. Dustbuster CHV1210 from Black & Decker
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Figure 4. Dustbuster taken apart

IGTA-plus and IGTA each performed 10 000 complete runs of clustering. All interaction
types were replaced with the numerical value of 1. The following section reports best solution
found, distribution of solutions, a graph of TotalCost for the best solution, and finally the

execution time.

RESULTS

Solutions found
Figure 5 shows the best solutions found.
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TA-plus

The graphic in Figure 6 shows the clusters in a list. Note IGTA identified Impeller and Motor
shaft as a module (cluster 9), as well as Motor bracket and Motor cover (cluster 10). Those

are the off-diagonal boxes in Figure 5.



IGTA-plus IGTA IGTA-plus

16] Low voltage AC connector male [70]
Leads
Battery bay left 1 2 | Low voltage AC connector female
Battery bay right 1 2 Light Emitting Diode

Clam shell left 1 2 Rectifier diode

Clam shell right Resistor
Dirt bowl receiver Transistor
Escutcheon Printed Circuit Board
Exhaust duct Motor terminals
Exhaust grate Vibration damper
Impeller housing Electric motor
Impeller Motor shaft
Motor bracket Motor cover
Wall hook receiver Filter media
Wall hook Filter media holder
Wall mount Nozzle release latch receiver
Grooves Dirt bowl release latch
Nozzle release spring Dirt bowl
Nozzle release latch Battery cell blank
Nozzle Shrink wrap

Vortex generator
Nozzle air duct
Dust flap
Nozzle release holder
Dirt bowl release spring
Dirt bowl release button
Anti-theft device
Structural handle
Styling handle
Power button

Figure 6. Clusters from Figure 5 shown as a list

Battery pack terminals
Battery cell rechargeable
Transformer
Power plugs
Encapsulation
Button cam receiver
Button cam device
Microswitch bracket
Microswitch

—
=5 o o= o= o]

N
.

— —
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TotalCost

Each algorithm was run 10 000 times, and a running tab was kept of the TotalCost of each
solution. The curves in Figure 7 shows the distribution of the solutions. The vertical axis has
been scaled to give an area of exactly one under each curve. Note the peak of the blue curve,
IGTA-plus, is narrower than that of IGTA, and shifted to the left, meaning both average and

standard deviation is lower.

2565 Probability

20E-6 ﬁ

15E-6
= IGTA-plus

10E-6

5E-6

0 50000 100000 1t

Figure 7. Distribution of solutions found

105



Cost history
The graph in Figure 8 shows the TotalCost as it changes for every iteration. This is referred to

as cost history. One complete run consists of several hundred iterations, and the run shown
here is the best solution found.

400000

300000

200000

1

100000

0

0 50 100 150 200 250 300 350 400
Iterations
Figure 8. Cost history for both algorithms - best solution shown

IGTA terminates after 783 iterations. Only the first 400 are shown in Figure 8. IGTA-plus
terminates after 225 iterations. Note wherever the cost history curve jumps up, that is a con-
sequence of the stochastic behavior built into the algorithm. The best solution found by IGTA
has a TotalCost of 212,744. The best solution found by IGTA-plus has a TotalCost of
178,127 which is 16% lower. In a test using 100 000 runs, the best solution still had
TotalCost of 178,127 so it seems likely there really is not a better solution to be found.

Execution speed
The bar chart in Figure 9 shows the execution time per complete run.
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Figure 9. Execution time (seconds)

Expressed as percentages we get the following improvements
e ITC reduces time per iteration by 70% (e.g., about 3.3 times faster)
e SMA reduces time per iteration by 58% (e.g., about 2.4 times faster)
e ITC and SMA together reduce time per iteration by 87% (e.g., about 7.7 times faster),
which is equivalent to the product of the contributions from ITC and SMA separately,
indicating they are independent.

OBSERVATIONS
In the Dustbuster trial used to test IGTA-plus, we observe that:
e IGTA-plus finds a better solution. When both algorithms are allowed to run many
times, IGTA-plus finds a solution with a lower TotalCost than IGTA.
e IGTA-plus is more consistent. Both average and standard deviation of TotalCost was
lower, which means IGTA-plus is more consistent than IGTA.
e IGTA-plus is much faster. Using the same settings, IGTA-plus runs seven to eight
times faster than IGTA.
e The improvements are independent. The two algorithmic improvements, ITC and
SMA, are independent of each other.

CONCLUSION AND FUTURE RESEARCH

IGTA-plus represents a significant improvement in speed and quality of solution obtained.
When both improvements are enabled, e.g., ITC and SMA operate in conjunction, the best
speed increase is obtained. SMA may be thought of as a more efficient formula for
calculating TotalCost. It does not alter the way the algorithm works. ITC is different,
however. It changes the way the algorithm selects candidate elements, and the trial runs
indicate this seems to have a very positive effect on the quality of the solution thus obtained.
An algorithmic improvement originally devised to address computational efficiency ended up
yielding better results (in addition to speed). It is not immediately obvious why that is the

107



case, but one way to think about it is ITC just does a better job of exhausting all possibilities
before it “gives up”.

In DSM research using IGTA or IGTA-plus, the algorithm should be allowed to run many
times, probably on the order of several thousand times, to ensure that a solution very close to
the best possible is obtained.

It is probably possible to improve further on IGTA-plus. The basic algorithm still displays a
tendency to get stuck in local optima. One way to alleviate this might be to introduce
recurring disruptive changes. Another topic of research would be to add heuristics that
recognize common structures such as a bus architecture.

NOTE ON MATLAB CODE

The Matlab code developed during this research is available for researchers interested in
testing IGTA-plus or making further improvements. Please contact the corresponding author
via email.
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